Curvilinear coordinates on generic conformally flat hypersurfaces and constant curvature 2-metrics

被引:5
作者
Burstall, Francis E. [1 ]
Hertrich-Jeromin, Udo [2 ]
Suyama, Yoshihiko [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Tech Univ Wien, E104,Wiedner Haupstr 8-10, A-1040 Vienna, Austria
[3] Fukuoka Univ, Dept Appl Math, Fukuoka 8140180, Japan
关键词
conformally flat hypersurface; surface metric with constant Gauss curvature-1; Guichard net; system of evolution equations; EUCLIDEAN; 4-SPACE; GUICHARD NET;
D O I
10.2969/jmsj/07027420
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a one-to-one correspondence between associated families of generic conformally flat (local-)hypersurfaces in 4-dimensional space forms and conformally flat 3-metrics with the Guichard condition. In this paper, we study the space of conformally flat 3-metrics with the Guichard condition: for a conformally flat 3-metric with the Guichard condition in the interior of the space, an evolution of orthogonal (local-)Riemannian 2-metrics with constant Gauss curvature 1 is determined; for a 2-metric belonging to a certain class of orthogonal analytic 2-metrics with constant Gauss curvature 1, a one-parameter family of conformally flat 3-metrics with the Guichard condition is determined as evolutions issuing from the 2-metric.
引用
收藏
页码:617 / 649
页数:33
相关论文
共 15 条
  • [1] [Anonymous], 2003, LONDON MATH SOC LECT
  • [2] Burstall F.E., 2006, AMS IP STUD ADV MATH, V36, P1
  • [3] Burstall F. E., 2009, CONFORMAL SUBM UNPUB, pIV
  • [4] Burstall FE, 2010, ARXIV10065700V1
  • [5] Cartan E., 1917, B SOC MATH FRANCE, V45, P57, DOI DOI 10.24033/BSMF.97546.1129.02
  • [6] Curved flats in symmetric spaces
    Ferus, D
    Pedit, F
    [J]. MANUSCRIPTA MATHEMATICA, 1996, 91 (04) : 445 - 454
  • [7] A duality for conformally flat hypersurfaces
    Hertrich-Jeromin U.
    Suyama Y.
    Umehara M.
    Yamada K.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2): : 655 - 676
  • [8] Hertrich-Jeromin U., 2015, PROGR MATH, V308, P449, DOI DOI 10.1007/978-3-319-11523-8_20
  • [9] Hertrich-Jeromin U., 1994, BEITR ALG GEOM, V35, P315
  • [10] Conformally flat hypersurfaces with cyclic guichard net
    Hertrich-Jeromin, Udo
    Suyama, Yoshihiko
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (03) : 301 - 329