Material characterization based on simulated spherical-Berkovich indentation tests

被引:7
作者
Harsono, E. [1 ]
Swaddiwudhipong, S. [1 ]
Liu, Z. S. [2 ]
机构
[1] Natl Univ Singapore, Dept Civil Engn, Singapore 119260, Singapore
[2] Inst High Performance Comp, Singapore 138632, Singapore
关键词
Indentation; Finite element analysis; Artificial neural network; Material characterization; NANOINDENTATION TESTS; CONSTITUTIVE MODELS; SHARP INDENTATION; NEURAL-NETWORKS; INDENTERS;
D O I
10.1016/j.scriptamat.2009.02.025
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Material properties can be extracted from load-displacement indentation curves via appropriate reverse data analysis. This reverse analysis can, however, be conveniently carried out using neural networks. We propose an artificial neural network model to extract material properties based on a simulated spherical and Berkovich indentation database. The proposed model can predict accurately the elastoplastic properties of a new set of materials. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:972 / 975
页数:4
相关论文
共 10 条
[1]   Determining constitutive models from conical indentation: Sensitivity analysis [J].
Capehart, TW ;
Cheng, YT .
JOURNAL OF MATERIALS RESEARCH, 2003, 18 (04) :827-832
[2]   On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials [J].
Chen, Xi ;
Ogasawara, Nagahisa ;
Zhao, Manhong ;
Chiba, Norimasa .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (08) :1618-1660
[3]   Scaling, dimensional analysis, and indentation measurements [J].
Cheng, YT ;
Cheng, CM .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2004, 44 (4-5) :91-149
[4]   Depth-sensing instrumented indentation with dual sharp indenters [J].
Chollacoop, N ;
Dao, M ;
Suresh, S .
ACTA MATERIALIA, 2003, 51 (13) :3713-3729
[5]   Computational modeling of the forward and reverse problems in instrumented sharp indentation [J].
Dao, M ;
Chollacoop, N ;
Van Vliet, KJ ;
Venkatesh, TA ;
Suresh, S .
ACTA MATERIALIA, 2001, 49 (19) :3899-3918
[6]   Nonlinear constitutive models from nanoindentation tests using artificial neural networks [J].
Haj-Ali, Rami ;
Kim, Hoan-Kee ;
Koh, Sau Wee ;
Saxena, Ashok ;
Tummala, Rao .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (03) :371-396
[7]   Determination of constitutive properties from spherical indentation data using neural networks. Part I: the case of pure kinematic hardening in plasticity laws [J].
Huber, N ;
Tsakmakis, C .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1999, 47 (07) :1569-1588
[8]   Artificial neural network and finite element modeling of nanoindentation tests [J].
Muliana, A ;
Steward, R ;
Haj-Ali, RM ;
Saxena, A .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (07) :1939-1947
[9]   Material characterization based on dual indenters [J].
Swaddiwudhipong, S ;
Tho, KK ;
Liu, ZS ;
Zeng, K .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2005, 42 (01) :69-83
[10]   New sharp indentation method of measuring the elastic-plastic properties of compliant and soft materials using the substrate effect [J].
Zhao, Manhong ;
Chen, Xi ;
Ogasawara, Nagahisa ;
Razvan, Anghel Constantin ;
Chiba, Norimasa ;
Lee, Dongyun ;
Gan, Yong X. .
JOURNAL OF MATERIALS RESEARCH, 2006, 21 (12) :3134-3151