Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities

被引:41
作者
Bakas, Spyridon [1 ,2 ,3 ]
Shukla, Gaurav [1 ,4 ]
Akbari, Hamed [1 ,2 ]
Erus, Guray [1 ,2 ]
Sotiras, Aristeidis [1 ,2 ,5 ,6 ]
Rathore, Saima [1 ,2 ]
Sako, Chiharu [1 ,2 ]
Ha, Sung Min [1 ,2 ]
Rozycki, Martin [1 ,2 ]
Shinohara, Russell T. [1 ,7 ]
Bilello, Michel [1 ,2 ]
Davatzikos, Christos [1 ,2 ]
机构
[1] Univ Penn, Perelman Sch Med, Ctr Biomed Image Comp & Analyt, Richards Med Res Labs, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Radiol, Richards Med Res Labs, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Richards Med Res Labs, Philadelphia, PA 19104 USA
[4] Thomas Jefferson Univ, Sidney Kimmel Canc Ctr, Dept Radiat Oncol, Philadelphia, PA 19107 USA
[5] Washington Univ, Sch Med, Inst Informat, St Louis, MO USA
[6] Washington Univ, Dept Radiol, St Louis, MO 63110 USA
[7] Univ Penn, Perelman Sch Med, Penn Stat Imaging & Visualizat Ctr, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
radiomics; glioblastoma; survival; prediction; prognosis; multivariate; NEWLY-DIAGNOSED GLIOBLASTOMA; RANDOMIZED PHASE-III; PATTERN-ANALYSIS; TEXTURAL FEATURES; RADIOGENOMICS; ROBUST; REGISTRATION; TEMOZOLOMIDE; MULTIFORME; IMAGES;
D O I
10.1117/1.JMI.7.3.031505
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Glioblastoma, the most common and aggressive adult brain tumor, is considered noncurative at diagnosis, with 14 to 16 months median survival following treatment. There is increasing evidence that noninvasive integrative analysis of radiomic features can predict overall and progression-free survival, using advanced multiparametric magnetic resonance imaging (Adv-mpMRI). If successfully applicable, such noninvasive markers can considerably influence patient management. However, most patients prior to initiation of therapy typically undergo only basic structural mpMRI (Bas-mpMRI, i.e., T1, T1-Gd, T2, and T2-fluid-attenuated inversion recovery) preoperatively, rather than Adv-mpMRI that provides additional vascularization (dynamic susceptibility contrast-MRI) and cell-density (diffusion tensor imaging) related information. Approach: We assess a retrospective cohort of 101 glioblastoma patients with available Adv-mpMRI from a previous study, which has shown that an initial feature panel (IFP, i.e., intensity, volume, location, and growth model parameters) extracted from Adv-mpMRI can yield accurate overall survival stratification. We focus on demonstrating that equally accurate prediction models can be constructed using augmented radiomic feature panels (ARFPs, i.e., integrating morphology and textural descriptors) extracted solely from widely available Bas-mpMRI, obviating the need for using Adv-mpMRI. We extracted 1612 radiomic features from distinct tumor subregions to build multivariate models that stratified patients as long-, intermediate-, or short-survivors. Results: The classification accuracy of the model utilizing Adv-mpMRI protocols and the IFP was 72.77% and degraded to 60.89% when using only Bas-mpMRI. However, utilizing the ARFP on Bas-mpMRI improved the accuracy to 74.26%. Furthermore, Kaplan-Meier analysis demonstrated superior classification of subjects into short-, intermediate-, and long-survivor classes when using ARFP extracted from Bas-mpMRI. Conclusions: This quantitative evaluation indicates that accurate survival prediction in glioblastoma patients is feasible using solely Bas-mpMRI and integrative advanced radiomic features, which can compensate for the lack of Adv-mpMRI. Our finding holds promise for generalization across multiple institutions that may not have access to Adv-mpMRI and to better inform clinical decision-making about aggressive interventions and clinical trials. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:18
相关论文
共 86 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Bilello, Michel ;
Wolf, Ronald L. ;
Martinez-Lage, Maria ;
Biros, George ;
Alonso-Basanta, Michelle ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEUROSURGERY, 2016, 78 (04) :572-580
[4]   Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Wolf, Ronald L. ;
Bilello, Michel ;
Verma, Ragini ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
RADIOLOGY, 2014, 273 (02) :502-510
[5]   TEXTURAL FEATURES CORRESPONDING TO TEXTURAL PROPERTIES [J].
AMADASUN, M ;
KING, R .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05) :1264-1274
[6]  
[Anonymous], 2016, ARXIV E PRINTS
[7]  
[Anonymous], 1992, Stat. Soc
[8]   T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status [J].
Arevalo-Perez, J. ;
Thomas, A. A. ;
Kaley, T. ;
Lyo, J. ;
Peck, K. K. ;
Holodny, A. I. ;
Mellinghoff, I. K. ;
Shi, W. ;
Zhang, Z. ;
Young, R. J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (12) :2256-2261
[9]   Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: A preliminary investigation in terms of identification and segmentation [J].
Assefa, Dawit ;
Keller, Harald ;
Menard, Cynthia ;
Laperriere, Normand ;
Ferrari, Ricardo J. ;
Yeung, Ivan .
MEDICAL PHYSICS, 2010, 37 (04) :1722-1736
[10]  
Bakas S., 2018, CoRR, abs/1811.02629