Spherical Harmonics and Approximations on the Unit Sphere: An Introduction Preface

被引:224
作者
Atkinson, Kendall [1 ,2 ]
Han, Weimin [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
来源
SPHERICAL HARMONICS AND APPROXIMATIONS ON THE UNIT SPHERE: AN INTRODUCTION | 2012年 / 2044卷
关键词
CONSTRUCTIVE POLYNOMIAL-APPROXIMATION; JACKSON-TYPE INEQUALITY; NUMERICAL-INTEGRATION; VECTOR-FUNCTIONS; QUADRATURE; FORMULAS; CONVERGENCE; TOMOGRAPHY; ALGORITHMS; SMOOTHNESS;
D O I
10.1007/978-3-642-25983-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:V / +
页数:7
相关论文
共 124 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]  
Ahlfors LV., 1966, Complex Analysis
[3]   Rotationally invariant quadratures for the sphere [J].
Ahrens, Cory ;
Beylkin, Gregory .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2110) :3103-3125
[4]   WELL CONDITIONED SPHERICAL DESIGNS FOR INTEGRATION AND INTERPOLATION ON THE TWO-SPHERE [J].
An, Congpei ;
Chen, Xiaojun ;
Sloan, Ian H. ;
Womersley, Robert S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2135-2157
[5]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[6]  
[Anonymous], DELAUNAY TRIANGULATI
[7]  
[Anonymous], 1966, LECT NOTES MATH
[8]  
[Anonymous], 1971, Approximate Calculation of Multiple Integrals
[9]  
[Anonymous], NUMERICAL INTEGRATIO
[10]  
[Anonymous], J APPROX THY