Strong Orthogonality between the Mobius Function and Nonlinear Exponential Functions in Short Intervals

被引:7
|
作者
Huang, Bingrong [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
PRIMES; SUMS; THEOREM;
D O I
10.1093/imrn/rnv091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu(n) be the Mobius function, e(z)= exp(2 pi iz), x real and 2 <= y <= x. This paper proves two sequences (mu(n)) and (e(n(k)alpha)) are strongly orthogonal in short intervals. That is, if k >= 3 being fixed and y >= x(1-1/4+epsilon), then for any A > 0, we have Sigma(x< n <= X+Y) mu(n)e(n(k)alpha) << Y(log Y)(-A) uniformly for alpha is an element of R.
引用
收藏
页码:12713 / 12736
页数:24
相关论文
共 4 条