共 4 条
Strong Orthogonality between the Mobius Function and Nonlinear Exponential Functions in Short Intervals
被引:7
|作者:
Huang, Bingrong
[1
]
机构:
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词:
PRIMES;
SUMS;
THEOREM;
D O I:
10.1093/imrn/rnv091
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let mu(n) be the Mobius function, e(z)= exp(2 pi iz), x real and 2 <= y <= x. This paper proves two sequences (mu(n)) and (e(n(k)alpha)) are strongly orthogonal in short intervals. That is, if k >= 3 being fixed and y >= x(1-1/4+epsilon), then for any A > 0, we have Sigma(x< n <= X+Y) mu(n)e(n(k)alpha) << Y(log Y)(-A) uniformly for alpha is an element of R.
引用
收藏
页码:12713 / 12736
页数:24
相关论文