On multi-transitivity with respect to a vector

被引:20
作者
Chen ZhiJing [1 ]
Li Jian [2 ]
Lu Jie [3 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Shantou Univ, Dept Math, Shantou 515063, Peoples R China
[3] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-transitivity; weak mixing; Furstenberg family; Li-Yorke chaos; POINTS;
D O I
10.1007/s11425-014-4797-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological dynamical system (X, f) is said to be multi-transitive if for every n a a"center dot the system (X (n) , f x f (2) x aEuro broken vertical bar x f (n) ) is transitive. We introduce the concept of multi-transitivity with respect to a vector and show that multi-transitivity can be characterized by the hitting time sets of open sets, answering a question proposed by Kwietniak and Oprocha (2012). We also show that multi-transitive systems are Li-Yorke chaotic.
引用
收藏
页码:1639 / 1648
页数:10
相关论文
共 16 条
[1]   Li-Yorke sensitivity [J].
Akin, E ;
Kolyada, S .
NONLINEARITY, 2003, 16 (04) :1421-1433
[2]  
AKIN E, 1997, U SERIES MATH
[3]   Topological complexity [J].
Blanchard, F ;
Host, B ;
Maass, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :641-662
[4]  
FURSTENBERG H, 1967, Theory of Computing Systems, DOI [DOI 10.1007/BF01692494, 10.1007/BF01692494]
[5]  
Furstenberg H., 1981, Recurrence in Ergodic Theory and Combinatorial Number Theory
[6]  
Glasner E., 2004, Topol. Methods Nonlinear Anal., V24, P21, DOI 10.12775/TMNA.2004.018
[7]  
Gottschalk W. H., 1955, Topological Dynamics
[8]   Dynamical systems disjoint from any minimal system [J].
Huang, W ;
Ye, XD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) :669-694
[9]   Topological complexity, return times and weak disjointness [J].
Huang, W ;
Ye, XD .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :825-846
[10]   Devaney's chaos or 2-scattering implies Li-Yorke's chaos [J].
Huang, W ;
Ye, XD .
TOPOLOGY AND ITS APPLICATIONS, 2002, 117 (03) :259-272