On Laser-Modified Rutherford Scattering

被引:0
|
作者
Zaytsev, Sergey A. [1 ]
Zaytsev, Alexander S. [1 ]
Ancarani, Lorenzo U. [2 ]
Kouzakov, Konstantin A. [3 ]
机构
[1] Pacific Natl Univ, Sch Fundamental & Comp Sci, Khabarovsk 680035, Russia
[2] Lorraine Univ, Natl Ctr Sci Res, Lab Phys & Theoret Chem, F-57000 Metz, France
[3] Lomonosov Moscow State Univ, Fac Phys, Dept Nucl Phys & Quantum Theory Collis, Moscow 119991, Russia
关键词
Rutherford scattering; Coulomb potential; laser field; laser-modified electron scattering; E+H+ SCATTERING; ATOMS;
D O I
10.3390/atoms8030040
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We present a theoretical analysis of a charged-particle scattering by a Coulomb potential in the presence of laser radiation. The effect of a laser field is studied using our recently developed nonperturbative parabolic quasi-Sturmian approach for solving the system of coupled Lippmann-Schwinger-Floquet equations in the Kramers-Henneberger frame. We calculate the ratio of multiphoton differential cross sections to the Rutherford cross section in the case of a laser-assisted electron-proton scattering process. Our results are compared with predictions of the Bunkin-Fedorov, Kroll-Watson, and Coulomb-Volkov analytical approximations: marked discrepancies are found for different net numbers of exchanged photons and different orientations of the laser-field polarization vector. Our findings clearly demonstrate deficiencies of those well-known approximations for describing laser-modified Rutherford scattering processes.
引用
收藏
页数:10
相关论文
共 41 条
  • [1] Laser-modified Coulomb scattering states of an electron in the parabolic quasi-Sturmian-Floquet approach
    Zaytsev, A. S.
    Zaytsev, S. A.
    Ancarani, L. U.
    Kouzakov, K. A.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [2] A shadow of the repulsive Rutherford scattering and Hamilton vector
    Shatilov, D. A.
    Silagadze, Z. K.
    EUROPEAN JOURNAL OF PHYSICS, 2021, 42 (03)
  • [3] A shadow of the repulsive Rutherford scattering in the laboratory frame
    Zugec, Petar
    Rudec, Dario
    EUROPEAN JOURNAL OF PHYSICS, 2021, 42 (05)
  • [4] Monte carlo simulation of Rutherford scattering with presence of impurity
    Li, Xin-Xia
    Yue, Dong-Ning
    Lei, Xiao-Chen
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2015, 49 (10): : 1740 - 1744
  • [5] Study of beam heating effect in a gas target through Rutherford scattering
    Marta, M.
    Confortola, F.
    Bemmerer, D.
    Boiano, C.
    Bonetti, R.
    Broggini, C.
    Casanova, M.
    Corvisiero, P.
    Costantini, H.
    Elekes, Z.
    Formicola, A.
    Fulop, Z.
    Gervino, G.
    Guglielmetti, A.
    Gustavino, C.
    Gyurky, G.
    Imbriani, G.
    Junker, M.
    Lemut, A.
    Limata, B.
    Menegazzo, R.
    Prati, P.
    Roca, V.
    Rolfs, C.
    Romano, M.
    Alvarez, C. Rossi
    Somorjai, E.
    Strieder, F.
    Terrasi, F.
    Trautvetter, H. P.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 569 (03) : 727 - 731
  • [6] Soft pattern of Rutherford scattering from heavy target mass expansion
    Jia, Yu
    Zhang, Jia-Yue
    CHINESE PHYSICS C, 2025, 49 (03)
  • [7] Prediction of deviations from the Rutherford formula for low-energy Coulomb scattering of wavepackets
    Hoffmann, Scott E.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (21)
  • [8] A shadow of the repulsive Rutherford scattering in the fixed-target and the center-of-mass frame
    Zugec, Petar
    Topic, Ivan
    EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (06)
  • [9] Laser cooling with a modified optical shaker
    Marmet, L.
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [10] Scattering of relativistic electrons by a focused laser pulse
    N. B. Narozhny
    M. S. Fofanov
    Journal of Experimental and Theoretical Physics, 2000, 90 : 753 - 768