Heat conduction mechanism in nanofluids

被引:17
作者
Pang, Changwei [1 ]
Lee, Jae Won [2 ]
Hong, Hiki [1 ]
Kang, Yong Tae [2 ]
机构
[1] Kyung Hee Univ, Dept Mech Engn, Yongin 446701, South Korea
[2] Korea Univ, Sch Mech Engn, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
Nanofluids; Thermal conductivity; Nanolayer; Aggregation; Nanoconvection; EFFECTIVE THERMAL-CONDUCTIVITY; MASS-TRANSFER ENHANCEMENT; BROWNIAN-MOTION; INTERFACIAL LAYERS; BINARY NANOFLUIDS; CARBON NANOTUBE; AGGREGATION; MODEL; TEMPERATURE; TRANSPORT;
D O I
10.1007/s12206-014-0645-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nanofluids are produced by dispersing nanoparticles in basefluid. Given its superior thermo-physical properties, nanofluids are gaining increasing attention and are showing promising potential in various applications. Numerous studies have been conducted in the past decade to experimentally and theoretically investigate thermal conductivity. The experimental finding is briefly summarized in this study; however, we do not intend to present a systematic summary of the available references from the literature. The primary objective of this study is to review and summarize the most debated mechanisms for heat conduction in nanofluids, such as the effects of a nanolayer, the Brownian motion of nanoparticles and aggregation, as well as induced convection. Finally, at a low concentration of nanoparticles, nanoconvection is the leading contributor to thermal conductivity enhancement, whereas at a higher concentration, the natural thermal transport along the backbone would aggregate, and the effects of the nanolayer would become significant and become ineligible.
引用
收藏
页码:2925 / 2936
页数:12
相关论文
共 90 条
[11]   Temperature dependence of thermal conductivity enhancement for nanofluids [J].
Das, SK ;
Putra, N ;
Thiesen, P ;
Roetzel, W .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (04) :567-574
[12]   Heat transfer between two nanoparticles through near field interaction [J].
Domingues, G ;
Volz, S ;
Joulain, K ;
Greffet, JJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (08)
[13]  
Dul'nev G.N., 1966, Journal of Engineering Physics and Thermophysics, V11, P747
[14]   The Classical Nature of Thermal Conduction in Nanofluids [J].
Eapen, Jacob ;
Rusconi, Roberto ;
Piazza, Roberto ;
Yip, Sidney .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (10) :1-14
[15]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[16]   Role of Brownian motion hydrodynamics on nanofluid thermal conductivity [J].
Evans, W ;
Fish, J ;
Keblinski, P .
APPLIED PHYSICS LETTERS, 2006, 88 (09)
[17]   Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J].
Evans, William ;
Prasher, Ravi ;
Fish, Jacob ;
Meakin, Paul ;
Phelan, Patrick ;
Keblinski, Pawel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) :1431-1438
[18]  
Every A. G., 1990, J MAT RES
[19]   Review of Heat Conduction in Nanofluids [J].
Fan, Jing ;
Wang, Liqiu .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (04)
[20]   The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles [J].
Feng, Yongjin ;
Yu, Boming ;
Xu, Peng ;
Zou, Mingqing .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (10) :3164-3171