GraphAligner: rapid and versatile sequence-to-graph alignment

被引:94
|
作者
Rautiainen, Mikko [1 ,2 ,3 ]
Marschall, Tobias [4 ]
机构
[1] Saarland Univ, Ctr Bioinformat, Saarland Informat Campus E2-1, D-66123 Saarbrucken, Germany
[2] Max Planck Inst Informat, Saarland Informat Campus E1-4, D-66123 Saarbrucken, Germany
[3] Saarbrucken Grad Sch Comp Sci, Saarland Informat Campus E1-3, D-66123 Saarbrucken, Germany
[4] Heinrich Heine Univ Dusseldorf, Fac Med, Inst Med Biometry & Bioinformat, Moorenstr 5, D-40225 Dusseldorf, Germany
关键词
Genome graphs; Sequence alignment; Pangenome; Error correction; Long reads; READ ALIGNMENT; ACCURATE; ALGORITHM; SEARCH; SEED;
D O I
10.1186/s13059-020-02157-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome graphscan represent genetic variation and sequence uncertainty. Aligning sequences to genome graphs is key to many applications, including error correction, genome assembly, and genotyping of variants in a pangenome graph. Yet, so far, this step is often prohibitively slow. We present GraphAligner, a tool for aligning long reads to genome graphs. Compared to the state-of-the-art tools, GraphAligner is 13x faster and uses 3x less memory. When employing GraphAligner for error correction, we find it to be more than twice as accurate and over 12x faster than extant tools. Availability: Package manager: https://anaconda.org/bioconda/graphaligner and source code: https://github.com/maickrau/GraphAligner
引用
收藏
页数:28
相关论文
共 50 条
  • [1] GraphAligner: rapid and versatile sequence-to-graph alignment
    Mikko Rautiainen
    Tobias Marschall
    Genome Biology, 21
  • [2] On the Complexity of Sequence-to-Graph Alignment
    Jain, Chirag
    Zhang, Haowen
    Gao, Yu
    Aluru, Srinivas
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (04) : 640 - 654
  • [3] Bit-parallel sequence-to-graph alignment
    Rautiainen, Mikko
    Maekinen, Veli
    Marschall, Tobias
    BIOINFORMATICS, 2019, 35 (19) : 3599 - 3607
  • [4] Accelerating Sequence-to-Graph Alignment on Heterogeneous Processors
    Feng, Zonghao
    Luo, Qiong
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,
  • [5] PVGwfa: a multi-level parallel sequence-to-graph alignment algorithmPVGwfa: a multi-level parallel sequence-to-graph alignment...C. Peng et al.
    Chenchen Peng
    Zeyu Xia
    Shengbo Tang
    Yifei Guo
    Canqun Yang
    Tao Tang
    Yingbo Cui
    The Journal of Supercomputing, 81 (5)
  • [6] AMR Parsing as Sequence-to-Graph Transduction
    Zhang, Sheng
    Ma, Xutai
    Duh, Kevin
    Van Durme, Benjamin
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 80 - 94
  • [7] A High-Performance Genomic Accelerator for Accurate Sequence-to-Graph Alignment Using Dynamic Programming Algorithm
    Zeng, Gang
    Zhu, Jianfeng
    Zhang, Yichi
    Chen, Ganhui
    Yuan, Zhenhai
    Wei, Shaojun
    Liu, Leibo
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (02) : 237 - 249
  • [8] SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping
    Cali, Damla Senol
    Kanellopoulos, Konstantinos
    Lindegger, Joel
    Bingol, Zulal
    Kalsi, Gurpreet S.
    Zuo, Ziyi
    Firtina, Can
    Cavlak, Meryem Banu
    Kim, Jeremie
    Ghiasi, Nika Mansouri
    Singh, Gagandeep
    Gomez-Luna, Juan
    Alserr, Nour Almadhoun
    Alser, Mohammed
    Subramoney, Sreenivas
    Alkan, Can
    Ghose, Saugata
    Mutlu, Onur
    PROCEEDINGS OF THE 2022 THE 49TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '22), 2022, : 638 - 655
  • [9] Efficient Mind-Map Generation via Sequence-to-Graph and Reinforced Graph Refinement
    Hu, Mengting
    Guo, Honglei
    Zhao, Shiwan
    Gao, Hang
    Su, Zhong
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8130 - 8141
  • [10] Graph Alignment Neural Network Model With Graph to Sequence Learning
    Ning, Nianwen
    Wu, Bin
    Ren, Haoqing
    Li, Qiuyue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4693 - 4706