Existence and Uniqueness of Fixed Point in Fuzzy Metric Spaces and its Applications

被引:8
作者
Gupta, Vishal [1 ]
Mani, Naveen [1 ]
机构
[1] Maharishi Markandeshwar Univ, Dept Math, Mullana Ambala 133001, Haryana, India
来源
PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2012) | 2014年 / 236卷
关键词
Fuzzy metric space; Rational expression; Integral type; Control function; THEOREMS;
D O I
10.1007/978-81-322-1602-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main aim of this paper is to prove some fixed point theorems in fuzzy metric spaces through rational inequality. Our results extend and generalize the results of many other authors existing in the literature. Some applications are also given in support of our results.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 14 条
[1]  
Balasubramaniam P., 2002, J FUZZY MATH, V10, P379
[2]  
CHO SH, 2006, INT MATH FORUM, V1, P471
[3]   Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces [J].
Cho, Yeol Je ;
Sedghi, Shaban ;
Shobe, Nabi .
CHAOS SOLITONS & FRACTALS, 2009, 39 (05) :2233-2244
[4]   ON SOME RESULTS IN FUZZY METRIC-SPACES [J].
GEORGE, A ;
VEERAMANI, P .
FUZZY SETS AND SYSTEMS, 1994, 64 (03) :395-399
[5]   FIXED-POINTS IN FUZZY METRIC-SPACES [J].
GRABIEC, M .
FUZZY SETS AND SYSTEMS, 1988, 27 (03) :385-389
[6]   On fixed-point theorems in fuzzy metric spaces [J].
Gregori, V ;
Sapena, A .
FUZZY SETS AND SYSTEMS, 2002, 125 (02) :245-252
[7]  
Kramosil J., 1975, Kybernatica11, P326
[8]  
Mishra S.N., 1994, INTEMAT J MATH SCI, V17, P253
[9]  
Saini RK, 2007, THAI J MATH, V5, P245
[10]  
Saini RK, 2008, THAI J MATH, V6, P109