Elements for developing an operational hidrology using remote sensing: soil-vegetation mixture

被引:0
作者
Paz-Pellat, Fernando [1 ]
Isabel Marin-Sosa, Ma [1 ]
Lopez-Bautista, Eliezer [1 ]
Zarco-Hidalgo, Alfonso [1 ]
Bolanos-Gonzalez, Martin A. [1 ]
Luis Oropeza-Mota, Jose [1 ]
Martinez-Menes, Mario [1 ]
Palacios-Velez, Enrique [1 ]
Rubinos-Panta, Enrique [1 ]
机构
[1] Colegio Postgrad, Montecillo 56230, Estado Mexico, Mexico
来源
INGENIERIA HIDRAULICA EN MEXICO | 2009年 / 24卷 / 02期
关键词
precipitation-runoff relationship; remote sensing; soil-vegetation mixture; energy and water balances; CROP COEFFICIENTS; EVAPORATION; ALGORITHM; MODEL; LEAF;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The hydrological response of the soil-vegetation system depends on the properties and covers of its components, particularly in the precipitation-runoff relationship. The use of remote sensing in hydrological applications is reviewed, concluding that the indirect modeling approaches used are complex and have multicolinearity problems. In the spectral dynamics associated with vegetation growth in the red and infrared spaces, the attractors or infinite reflectance points let us to propose an equivalence of reflectances with hydraulic properties of the soil-vegetation system using the concept of equivalent moisture. This kind of modeling is generalizable for any spectral space between two bands. Finally, using energy and water balances in a basin or plot of land the theoretical foundations are established for the use of remote sensing in the modeling of the precipitation-runoff relationship.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 50 条
  • [1] Elements for developing an operational hidrology using remote sensing: bare soil
    Paz-Pellat, Fernando
    Isabel Marin-Sosa, Ma
    Lopez-Bautista, Eliezer
    Zarco-Hidalgo, Alfonso
    Bolanos-Gonzalez, Martin A.
    Luis Oropeza-Mota, Jose
    Martinez-Menes, Mario
    Palacios-Velez, Enrique
    Rubinos-Panta, Enrique
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2010, 1 (02) : 59 - 71
  • [2] Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices
    Binte Mostafiz, Rubaiya
    Noguchi, Ryozo
    Ahamed, Tofael
    LAND, 2021, 10 (02) : 1 - 26
  • [3] Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability
    Maynard, Jonathan J.
    Levi, Matthew R.
    GEODERMA, 2017, 285 : 94 - 109
  • [4] Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications
    Shin, Yongchul
    Mohanty, Binayak P.
    WATER RESOURCES RESEARCH, 2013, 49 (10) : 6208 - 6228
  • [5] Remote sensing of soil-vegetation-atmosphere transfer processes
    Burke, EJ
    Banks, AC
    Gurney, RJ
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 1997, 21 (04): : 549 - 572
  • [6] Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach
    Senay, Gabriel B.
    Bohms, Stefanie
    Singh, Ramesh K.
    Gowda, Prasanna H.
    Velpuri, Naga M.
    Alemu, Henok
    Verdin, James P.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2013, 49 (03): : 577 - 591
  • [7] Probabilistic description of vegetation ecotones using remote sensing
    de Klerk, H. M.
    Burgess, N. D.
    Visser, V.
    ECOLOGICAL INFORMATICS, 2018, 46 : 125 - 132
  • [8] Estimating soil salinity with different fractional vegetation cover using remote sensing
    Zhang, Junrui
    Zhang, Zhitao
    Chen, Junying
    Chen, Haiying
    Jin, Jiming
    Han, Jia
    Wang, Xintao
    Song, Zhishuang
    Wei, Guangfei
    LAND DEGRADATION & DEVELOPMENT, 2021, 32 (02) : 597 - 612
  • [9] STUDY ON THE RELATIONSHIP BETWEEN VEGETATION COVER AND SOIL EROSION BY USING REMOTE SENSING
    Firozan, Amir Hossein
    Abed, Mahsa Hakimi
    INTERNATIONAL JOURNAL OF ECOSYSTEMS AND ECOLOGY SCIENCE-IJEES, 2016, 6 (03): : 267 - 272
  • [10] Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index
    Kamble, Baburao
    Kilic, Ayse
    Hubbard, Kenneth
    REMOTE SENSING, 2013, 5 (04) : 1588 - 1602