Stochastic Finite Integration Technique Formulation for Electrokinetics

被引:18
作者
Codecasa, Lorenzo [1 ]
Di Rienzo, Luca [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
关键词
Electrokinetics; finite integration technique; polynomial chaos expansion; ELEMENT-METHOD; GRIDS;
D O I
10.1109/TMAG.2013.2280522
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A stochastic finite integration technique formulation of an electrokinetic problem is derived applying the polynomial chaos expansion. The formulation is able to provide the uncertainty quantification of fields and integral quantities. It is applied to a test case representing an industrial application and the obtained results are in good agreement with those calculated by means of Monte Carlo simulations, with the advantage of a reduction in the computational time.
引用
收藏
页码:573 / 576
页数:4
相关论文
共 9 条
[1]  
[Anonymous], IEEE T MAGN IN PRESS
[2]   3-D Stochastic Spectral Finite-Element Method in Static Electromagnetism Using Vector Potential Formulation [J].
Beddek, Karim ;
Le Menach, Yvonnick ;
Clenet, Stephane ;
Moreau, Olivier .
IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (05) :1250-1253
[3]   Error estimation in a stochastic finite element method in electrokinetics [J].
Clenet, S. ;
Ida, N. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (11) :1417-1438
[4]   Use of barycentric dual grids for the solution of frequency domain problems by FIT [J].
Codecasa, L ;
Minerva, V ;
Politi, M .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) :1414-1419
[5]   Explicit, consistent, and conditionally stable extension of FD-TD to tetrahedral grids by FIT [J].
Codecasa, Lorenzo ;
Politi, Marco .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :1258-1261
[6]   A new set of basis functions for the discrete geometric approach [J].
Codecasa, Lorenzo ;
Specogna, Ruben ;
Trevisan, Francesco .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :7401-7410
[7]   Construction of differential material matrices for the orthogonal finite-integration technique with nonlinear materials [J].
De Gersem, Herbert ;
Munteanu, Irina ;
Weiland, Thomas .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :710-713
[8]  
Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
[9]  
Xiu D, 2010, NUMERICAL METHODS FOR STOCHASTIC COMPUTATIONS: A SPECTRAL METHOD APPROACH, P1