Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots

被引:963
作者
Swarnkar, Abhishek [1 ]
Chulliyil, Ramya [2 ]
Ravi, Vikash Kumar [1 ]
Irfanullah, Mir [2 ]
Chowdhury, Arindam [2 ]
Nag, Angshuman [1 ]
机构
[1] IISER, Dept Chem, Pune 411008, Maharashtra, India
[2] Indian Inst Technol, Dept Chem, Bombay 400076, Maharashtra, India
关键词
blinking; colloidal quantum dots; CsPbBr3; luminescence; nanocrystals; perovskites; ORGANOMETAL HALIDE PEROVSKITES; LIGHT-EMITTING DEVICES; FLUORESCENCE INTERMITTENCY; CDSE NANOCRYSTALS; LEAD BROMIDE; SOLAR-CELLS; BLINKING; GROWTH; TRANSISTORS; DISPLAY;
D O I
10.1002/anie.201508276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90% PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Forster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within +/- 1 nm. Also, PLpeak positions do not alter with measurement temperature in the range of 25 to 100 degrees C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90% of the individual NCs remain mostly emissive (on-time > 85%), without much influence of excitation power.
引用
收藏
页码:15424 / 15428
页数:5
相关论文
共 42 条
[11]   Control of Emission Color of High Quantum Yield CH3 NH3 PbBr3 Perovskite Quantum Dots by Precipitation Temperature [J].
Huang, He ;
Susha, Andrei S. ;
Kershaw, Stephen V. ;
Hung, Tak Fu ;
Rogach, Andrey L. .
ADVANCED SCIENCE, 2015, 2 (09)
[12]   Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 [J].
Huang, Ling-yi ;
Lambrecht, Walter R. L. .
PHYSICAL REVIEW B, 2013, 88 (16)
[13]   Modeling of Lead Halide Perovskites for Photovoltaic Applications [J].
Jishi, Radi A. ;
Ta, Oliver B. ;
Sharif, Adel A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (49) :28344-28349
[14]   Electronic energy transfer in CdSe quantum dot solids [J].
Kagan, CR ;
Murray, CB ;
Nirmal, M ;
Bawendi, MG .
PHYSICAL REVIEW LETTERS, 1996, 76 (09) :1517-1520
[15]   Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors [J].
Kagan, CR ;
Mitzi, DB ;
Dimitrakopoulos, CD .
SCIENCE, 1999, 286 (5441) :945-947
[16]  
Khan A. H., 2015, ANGEW CHEM, V127, P2681, DOI [10.1002/ange.201409518, DOI 10.1002/ANGE.201409518]
[17]   Efficient Solid-State Light-Emitting CuCdS Nanocrystals Synthesized in Air [J].
Khan, Ali Hossain ;
Dalui, Amit ;
Mukherjee, Soham ;
Segre, Carlo U. ;
Sarma, D. D. ;
Acharya, Somobrata .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (09) :2643-2648
[18]   Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J].
Kojima, Akihiro ;
Teshima, Kenjiro ;
Shirai, Yasuo ;
Miyasaka, Tsutomu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (17) :6050-+
[19]   Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites [J].
Lee, Michael M. ;
Teuscher, Joel ;
Miyasaka, Tsutomu ;
Murakami, Takurou N. ;
Snaith, Henry J. .
SCIENCE, 2012, 338 (6107) :643-647
[20]  
Manser JS, 2014, NAT PHOTONICS, V8, P737, DOI [10.1038/nphoton.2014.171, 10.1038/NPHOTON.2014.171]