Bifurcation Analysis and Spatiotemporal Patterns in a Diffusive Predator-Prey Model

被引:11
|
作者
Hu, Guangping [1 ]
Li, Xiaoling [1 ]
Lu, Shiping [1 ]
Wang, Yuepeng [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 06期
关键词
Hopf bifurcation; diffusion; Turing instability; pattern; chaos; LOTKA-VOLTERRA MODEL; FUNCTIONAL-RESPONSES; SYSTEM; CHAOS; DYNAMICS;
D O I
10.1142/S0218127414500813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a species predator-prey model given a reaction-diffusion system. It incorporates the Holling type II functional response and a quadratic intra-predator interaction term. We focus on the qualitative analysis, bifurcation mechanisms and pattern formation. We present the results of numerical experiments in two space dimensions and illustrate the impact of the diffusion on the Turing pattern formation. For this diffusion system, we also observe non-Turing structures such as spiral wave, target pattern and spatiotemporal chaos resulting from the time evolution of these structures.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Bifurcation on diffusive Holling-Tanner predator-prey model with stoichiometric density dependence
    Surendar, Maruthai Selvaraj
    Sambath, Muniyagounder
    Balachandran, Krishnan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (02): : 225 - 244
  • [32] Hopf bifurcation in a diffusive predator-prey model with competitive interference
    Liu, Fuxiang
    Yang, Ruizhi
    Tang, Leiyu
    CHAOS SOLITONS & FRACTALS, 2019, 120 : 250 - 258
  • [33] Bifurcation analysis of an autonomous epidemic predator-prey model with delay
    Xu, Changjin
    Liao, Maoxin
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) : 23 - 38
  • [34] Turing instability and Hopf bifurcation in a diffusive Leslie-Gower predator-prey model
    Peng, Yahong
    Liu, Yangyang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) : 4158 - 4170
  • [35] Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system
    Hu, Guangping
    Li, Xiaoling
    Wang, Yuepeng
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 265 - 275
  • [36] Stability and Hopf bifurcation analysis of a diffusive predator-prey model with Smith growth
    Sivakumar, M.
    Sambath, M.
    Balachandran, K.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (01)
  • [37] Bifurcation analysis of a delayed diffusive predator-prey model with spatial memory and toxins
    Wu, Ming
    Yao, Hongxing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [38] Hopf bifurcation and hybrid control of a delayed diffusive semi-ratio-dependent predator-prey model
    Li, Hairong
    Tian, Yanling
    Huang, Ting
    Yang, Pinghua
    AIMS MATHEMATICS, 2024, 9 (10): : 29608 - 29632
  • [39] DELAY INDUCED SUBCRITICAL HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND HYPERBOLIC MORTALITY
    Tang, Xiaosong
    Jiang, Heping
    Deng, Zhiyun
    Yu, Tao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (04): : 1385 - 1401
  • [40] Pattern dynamics of a diffusive predator-prey model with delay effect
    Hu, Guangping
    Li, Xiaoling
    Li, Dongliang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (04)