A statistical approach to determining energetic outer radiation belt electron precipitation fluxes

被引:10
作者
Wedlund, Mea Simon [1 ]
Clilverd, Mark A. [2 ]
Rodger, Craig J. [1 ]
Cresswell-Moorcock, Kathy [1 ]
Cobbett, Neil [2 ]
Breen, Paul [2 ]
Danskin, Donald [3 ]
Spanswick, Emma [4 ]
Rodriguez, Juan V. [5 ,6 ]
机构
[1] Univ Otago, Dept Phys, Dunedin, New Zealand
[2] British Antarctic Survey, Cambridge CB3 0ET, England
[3] Nat Resources Canada, Geomagnet Lab, Ottawa, ON, Canada
[4] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
[5] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[6] NOAA, Natl Geophys Data Ctr, Boulder, CO 80303 USA
关键词
electron precipitation; geomagnetic storm; WIND STREAM INTERFACES; RELATIVISTIC ELECTRONS; PLASMASPHERIC HISS; D-REGION; ATMOSPHERE; ZONE;
D O I
10.1002/2013JA019715
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Subionospheric radio wave data from an Antarctic-Arctic Radiation-Belt (Dynamic) Deposition VLF Atmospheric Research Konsortia (AARDDVARK) receiver located in Churchill, Canada, is analyzed to determine the characteristics of electron precipitation into the atmosphere over the range 3<L<7. The study advances previous work by combining signals from two U.S. transmitters from 20 July to 20 August 2010, allowing error estimates of derived electron precipitation fluxes to be calculated, including the application of time-varying electron energy spectral gradients. Electron precipitation observations from the NOAA POES satellites and a ground-based riometer provide intercomparison and context for the AARDDVARK measurements. AARDDVARK radiowave propagation data showed responses suggesting energetic electron precipitation from the outer radiation belt starting 27 July 2010 and lasting similar to 20days. The uncertainty in >30keV precipitation flux determined by the AARDDVARK technique was found to be +/- 10%. Peak >30keV precipitation fluxes of AARDDVARK-derived precipitation flux during the main and recovery phase of the largest geomagnetic storm, which started on 4 August 2010, were >105 el cm-2s-1sr-1. The largest fluxes observed by AARDDVARK occurred on the dayside and were delayed by several days from the start of the geomagnetic disturbance. During the main phase of the disturbances, nightside fluxes were dominant. Significant differences in flux estimates between POES, AARDDVARK, and the riometer were found after the main phase of the largest disturbance, with evidence provided to suggest that >700keV electron precipitation was occurring. Currently the presence of such relativistic electron precipitation introduces some uncertainty in the analysis of AARDDVARK data, given the assumption of a power law electron precipitation spectrum.
引用
收藏
页码:3961 / 3978
页数:18
相关论文
共 46 条
[1]   The Galaxy 15 Anomaly: Another Satellite in the Wrong Place at a Critical Time [J].
Allen, Joe .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2010, 8
[2]   STRONG ELECTRON PITCH ANGLE DIFFUSION OBSERVED AT GEOSTATIONARY ORBIT [J].
BAKER, DN ;
STAUNING, P ;
HONES, EW ;
HIGBIE, PR ;
BELIAN, RD .
GEOPHYSICAL RESEARCH LETTERS, 1979, 6 (03) :205-208
[3]   Relativistic-electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind [J].
Borovsky, Joseph E. ;
Denton, Michael H. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[4]   The unexpected origin of plasmaspheric hiss from discrete chorus emissions [J].
Bortnik, Jacob ;
Thorne, Richard M. ;
Meredith, Nigel P. .
NATURE, 2008, 452 (7183) :62-66
[5]   Energetic particle injection, acceleration, and loss during the geomagnetic disturbances which upset Galaxy 15 [J].
Clilverd, Mark A. ;
Rodger, Craig J. ;
Danskin, Donald ;
Usanova, Maria E. ;
Raita, Tero ;
Ulich, Thomas ;
Spanswick, Emma L. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
[6]   Ground-based estimates of outer radiation belt energetic electron precipitation fluxes into the atmosphere [J].
Clilverd, Mark A. ;
Rodger, Craig J. ;
Gamble, Rory J. ;
Ulich, Thomas ;
Raita, Tero ;
Seppala, Annika ;
Green, Janet C. ;
Thomson, Neil R. ;
Sauvaud, Jean-Andre ;
Parrot, Michel .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[7]   Energetic outer radiation belt electron precipitation during recurrent solar activity [J].
Clilverd, Mark A. ;
Rodger, Craig J. ;
Moffat-Griffin, Tracy ;
Spanswick, Emma ;
Breen, Paul ;
Menk, Frederick W. ;
Grew, Russell S. ;
Hayashi, Kanji ;
Mann, Ian R. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[8]   Remote sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network [J].
Clilverd, Mark A. ;
Rodger, Craig J. ;
Thomson, Neil R. ;
Brundell, James B. ;
Ulich, Thomas ;
Lichtenberger, Janos ;
Cobbett, Neil ;
Collier, Andrew B. ;
Menk, Frederick W. ;
Seppala, Annika ;
Verronen, Pekka T. ;
Turunen, Esa .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2009, 7
[9]   Observations of energetic storm particles: An overview [J].
Cohen, Christina M. S. .
SOLAR ERUPTIONS AND ENERGETIC PARTICLES, 2006, 165 :275-282
[10]  
Curto J. J., 2007, EARTH PLANETS SPACE, V59, P1