Mass-energy equivalence in gravitationally bound quantum states of the neutron

被引:1
|
作者
Tobar, Germain [1 ,2 ]
Haime, Simon [3 ]
Costa, Fabio [1 ]
Zych, Magdalena [1 ]
机构
[1] Univ Queensland, Ctr Engn Quantum Syst, Sch Math & Phys, St Lucia, QLD 4072, Australia
[2] Ctr Math Sci, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 OWA, England
[3] Australian Natl Univ, Res Sch Phys, Dept Quantum Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
FIELD;
D O I
10.1103/PhysRevA.106.052801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gravitationally bound neutrons have become an important tool in the experimental searches for new physics, such as modifications to Newton's force or candidates for dark matter particles. Here we include the relativistic effects of mass-energy equivalence into the model of gravitationally bound neutrons. Specifically, we investigate a correction in a gravitationally bound neutron's Hamiltonian due to the presence of an external magnetic field. We show that the neutron's additional weight due to mass-energy equivalence will cause a small shift in the neutron's eigenenergies and eigenstates, and examine how this relativistic correction would affect experiments with trapped neutrons. We further consider the ultimate precision in estimating the relativistic correction to the precession frequency and find that, at short times, a joint measurement of both the spin and motional degrees of freedom provides a metrological enhancement as compared to a measurement of the spin alone.
引用
收藏
页数:11
相关论文
共 21 条
  • [1] Gravitationally bound quantum states of ultracold neutrons and their applications
    Baessler, S.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (10)
  • [2] A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer
    Kreuz, M.
    Nesvizhevsky, V. V.
    Schmidt-Wellenburg, P.
    Soldner, T.
    Thomas, M.
    Boerner, H. G.
    Naraghi, F.
    Pignol, G.
    Protasov, K. V.
    Rebreyend, D.
    Vezzu, F.
    Flaminio, R.
    Michel, C.
    Morgado, N.
    Pinard, L.
    Baessler, S.
    Gagarski, A. M.
    Grigorieva, L. A.
    Kuzmina, T. M.
    Meyerovich, A. E.
    Mezhov-Deglin, L. P.
    Petrov, G. A.
    Strelkov, A. V.
    Voronin, A. Yu.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 611 (2-3) : 326 - 330
  • [3] Observation of the Spatial Distribution of Gravitationally Bound Quantum States of Ultracold Neutrons and Its Derivation Using the Wigner Function
    Ichikawa, G.
    Komamiya, S.
    Kamiya, Y.
    Minami, Y.
    Tani, M.
    Geltenbort, P.
    Yamamura, K.
    Nagano, M.
    Sanuki, T.
    Kawasaki, S.
    Hino, M.
    Kitaguchi, M.
    PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [4] Mass loss and longevity of gravitationally bound oscillating scalar lumps (oscillatons) in D dimensions
    Fodor, Gyula
    Forgacs, Peter
    Mezei, Mark
    PHYSICAL REVIEW D, 2010, 81 (06)
  • [5] Dot-bound and dispersive states in graphene quantum dot superlattices
    Pieper, A.
    Heinisch, R. L.
    Wellein, G.
    Fehske, H.
    PHYSICAL REVIEW B, 2014, 89 (16):
  • [6] COMPARING ENERGY DIFFERENCE AND FIDELITY OF QUANTUM STATES
    Dodonov, Victor V.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (05) : 412 - 421
  • [7] Bound states of Dirac electrons in a graphene-based magnetic quantum dot
    Wang, Dali
    Jin, Guojun
    PHYSICS LETTERS A, 2009, 373 (44) : 4082 - 4085
  • [8] The relativistic gamma factor from Newtonian mechanics and Einstein's equivalence of mass and energy
    Cross, Daniel J.
    AMERICAN JOURNAL OF PHYSICS, 2016, 84 (05) : 384 - 387
  • [9] Electron-polaron-electron-polaron bound states in mass-gap graphene-like planar quantum electrodynamics: s-wave bipolarons
    Del Cima, Oswaldo M.
    Miranda, Emerson S.
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (10)
  • [10] Quantized Energy Spectrum and Modified Andreev Bound States of a Superconductor with Generalized Uncertainty Principle
    Ke, Sha-Sha
    Yao, Xu-Ping
    Lu, Hai-Feng
    FEW-BODY SYSTEMS, 2016, 57 (01) : 1 - 10