Nitrogen doped graphene quantum dots (N-GQDs)/Co3O4 composite material as an efficient bi-functional electrocatalyst for oxygen, evolution and-oxygen reduction reactions

被引:91
作者
Muthurasu, A. [1 ,2 ]
Mers, S. V. Sheen [1 ,2 ]
Ganesh, V. [1 ,2 ]
机构
[1] CECRI, CSIR, Cent Electrochem Res Inst, Electrod & Electrocatalysis EEC Div, Karaikkudi 630003, Tamil Nadu, India
[2] Acad Sci & Innovat Res AcSIR, New Delhi 110025, India
关键词
Bi-functional; Cobalt oxide; Composite material; Electrocatalyst; Graphene quantum dots; Oxygen evolution reaction and oxygen reduction reaction; BIFUNCTIONAL CATALYST; CO3O4; NANOCRYSTALS; COBALT OXIDE; CARBON NANOTUBES; NANOPARTICLES; WATER; FACILE; ALKALINE; HYBRIDS; STABILITY;
D O I
10.1016/j.ijhydene.2017.11.157
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a facile development of a bi-functional electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is reported. A composite material comprising of tiny particles of nitrogen doped graphene quantum dots (N-GQDs) embedded into cobalt oxide (Co3O4) flakes is prepared by sodium borohydride reduction method and followed by annealing at 600 degrees C under inert atmosphere. Structutal, morphological and crystalline featured are analyzed using FESEM, TEM, HRTEM, XRD and XPS studied. More-over, optical and fluorescence properties of N-GQDs are studied using UV-visible and fluorescence spectroscopic techniques. These studies clearly reveal and confirm the formation of a composite material. Further electrochemical characteristics toward OER and ORR are investigated by using linear sweep voltammetry (LSV) and cyclic voltammetry (CV) techniques. Compared to the individual entities of pure Co3O4 and N-GQDs alone, the electrocatalytic activity of N-GQDs/Co3O4 composite material is significantly higher towards ORR. Similarly, the same composite material is also used as an electrocatalyst for OER in 0.1 M KOH aqueous electrolyte and it exhibits a lower overpotential of 330 mV to obtain a current density of 10 mA/cm(2) along with higher electrocatalytic activity and the reason is mainly attributed to the synergistic effect between N-GQDs and Co3O4. Thus, NGQDs/Co3O4 composite material is demonstrated to be a high performance bi-functional electrocatalyst for ORR and OER. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4726 / 4737
页数:12
相关论文
共 68 条
[1]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[2]   Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction [J].
Alia, Shaun M. ;
Rasimick, Brian ;
Ngo, Chilan ;
Neyerlin, K. C. ;
Kocha, Shyam S. ;
Pylypenko, Svitlana ;
Xu, Hui ;
Pivovar, Bryan S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3105-F3112
[3]  
[Anonymous], 2014, COMPUT MATH METHOD M
[4]   IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting [J].
Audichon, Thomas ;
Napporn, Teko W. ;
Canaff, Christine ;
Morais, Claudia ;
Comminges, Clement ;
Kokoh, K. Boniface .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (05) :2562-2573
[5]  
Baglio V, 2011, INT J ELECTROCHEM, V2011, P1
[6]   Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism [J].
Bao, Lei ;
Zhang, Zhi-Ling ;
Tian, Zhi-Quan ;
Zhang, Li ;
Liu, Cui ;
Lin, Yi ;
Qi, Baoping ;
Pang, Dai-Wen .
ADVANCED MATERIALS, 2011, 23 (48) :5801-5806
[7]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[8]   3,5-Diamino-1,2,4-triazole as a Nitrogen precursor to synthesize highly efficient Co-N/C non-precious metal bifunctional catalyst for oxygen reduction reaction and oxygen evolution reaction [J].
Chao, Shujun ;
Geng, Mingjiang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (30) :12995-13004
[9]   Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells [J].
Chen, GY ;
Bare, SR ;
Mallouk, TE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A1092-A1099
[10]   Combinatorial discovery of bifunctional oxygen reduction - water oxidation electrocatalysts for regenerative fuel cells [J].
Chen, GY ;
Delafuente, DA ;
Sarangapani, S ;
Mallouk, TE .
CATALYSIS TODAY, 2001, 67 (04) :341-355