A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production

被引:57
作者
Menon, Vikram [1 ]
Janardhanan, Vinod M. [2 ]
Deutschmann, Olaf [1 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, D-76131 Karlsruhe, Germany
[2] Indian Inst Technol Hyderabad, Dept Chem Engn, Yeddumailaram 502205, Andhra Pradesh, India
[3] Karlsruhe Inst Technol, Inst Catalysis Res & Technol, D-76131 Karlsruhe, Germany
关键词
Solid oxide electrolyzer cell (SOEC); Hydrogen production; Numerical modeling; Reaction kinetics; HIGH-TEMPERATURE ELECTROLYSIS; STEAM ELECTROLYSIS; FUEL-CELL; PERFORMANCE; TRANSPORT; BEHAVIOR;
D O I
10.1016/j.ces.2013.10.025
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this analysis, we report an in-house model to describe the complex fundamental and functional interactions between various internal physico-chemical phenomena of a SOEC. Electrochemistry at the three-phase boundary is modeled using a modified Butler-Volmer approach that considers H-2 as the electrochemically active species. Also, a multi step elementary heterogeneous reaction mechanism for the thermo-catalytic H-2 electrode chemistry, dusty-gas model to account for multi component diffusion through porous media, and plug flow model for flow through the channels are used. Results pertaining to detailed chemical processes within the cathode, electrochemical behavior and irreversible losses during SOEC operation are demonstrated. Furthermore, efficiency analysis is performed and limiting current behavior of the SOEC system is investigated. (C) 2013 Elsevier Ltd. All rights reserved
引用
收藏
页码:83 / 93
页数:11
相关论文
共 30 条
[11]   Modeling diffusion limitation in solid-oxide fuel cells [J].
Janardhanan, Vinod M. ;
Deutschmann, Olaf .
ELECTROCHIMICA ACTA, 2011, 56 (27) :9775-9782
[12]   Hydrogen and synthetic fuel production from renewable energy sources [J].
Jensen, Soren H. ;
Larsen, Peter H. ;
Mogensen, Mogens .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3253-3257
[13]   Computational fluid dynamics analysis of solid oxide electrolysis cells with delaminations [J].
Jin, Xinfang ;
Xue, Xingjian .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (14) :7321-7328
[14]   Recent advances in high temperature electrolysis using solid oxide fuel cells: A review [J].
Laguna-Bercero, M. A. .
JOURNAL OF POWER SOURCES, 2012, 203 :4-16
[15]   Modelling of solid oxide steam electrolyser Impact of the operating conditions on hydrogen production [J].
Laurencin, J. ;
Kane, D. ;
Delette, G. ;
Deseure, J. ;
Lefebvre-Joud, F. .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2080-2093
[16]   Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production [J].
Liu Mingyi ;
Yu Bo ;
Xu Jingming ;
Chen Jing .
JOURNAL OF POWER SOURCES, 2008, 177 (02) :493-499
[17]   Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism [J].
Maier, L. ;
Schaedel, B. ;
Delgado, K. Herrera ;
Tischer, S. ;
Deutschmann, O. .
TOPICS IN CATALYSIS, 2011, 54 (13-15) :845-858
[18]   A novel approach to model the transient behavior of solid-oxide fuel cell stacks [J].
Menon, Vikram ;
Janardhanan, Vinod M. ;
Tischer, Steffen ;
Deutschmann, Olaf .
JOURNAL OF POWER SOURCES, 2012, 214 :227-238
[19]   Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) [J].
Ni, Meng ;
Leung, Michael K. H. ;
Leung, Dennis Y. C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (09) :2337-2354
[20]   Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production [J].
Ni, Meng ;
Leung, Michael K. H. ;
Leung, Dennis Y. C. .
ELECTROCHIMICA ACTA, 2007, 52 (24) :6707-6718