A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production

被引:57
作者
Menon, Vikram [1 ]
Janardhanan, Vinod M. [2 ]
Deutschmann, Olaf [1 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, D-76131 Karlsruhe, Germany
[2] Indian Inst Technol Hyderabad, Dept Chem Engn, Yeddumailaram 502205, Andhra Pradesh, India
[3] Karlsruhe Inst Technol, Inst Catalysis Res & Technol, D-76131 Karlsruhe, Germany
关键词
Solid oxide electrolyzer cell (SOEC); Hydrogen production; Numerical modeling; Reaction kinetics; HIGH-TEMPERATURE ELECTROLYSIS; STEAM ELECTROLYSIS; FUEL-CELL; PERFORMANCE; TRANSPORT; BEHAVIOR;
D O I
10.1016/j.ces.2013.10.025
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this analysis, we report an in-house model to describe the complex fundamental and functional interactions between various internal physico-chemical phenomena of a SOEC. Electrochemistry at the three-phase boundary is modeled using a modified Butler-Volmer approach that considers H-2 as the electrochemically active species. Also, a multi step elementary heterogeneous reaction mechanism for the thermo-catalytic H-2 electrode chemistry, dusty-gas model to account for multi component diffusion through porous media, and plug flow model for flow through the channels are used. Results pertaining to detailed chemical processes within the cathode, electrochemical behavior and irreversible losses during SOEC operation are demonstrated. Furthermore, efficiency analysis is performed and limiting current behavior of the SOEC system is investigated. (C) 2013 Elsevier Ltd. All rights reserved
引用
收藏
页码:83 / 93
页数:11
相关论文
共 30 条
[1]  
Bear J., 1972, Dynamics of Fluids in Porous Media
[2]   ONE-STEP AND EXTRAPOLATION METHODS FOR DIFFERENTIAL-ALGEBRAIC SYSTEMS [J].
DEUFLHARD, P ;
HAIRER, E ;
ZUGCK, J .
NUMERISCHE MATHEMATIK, 1987, 51 (05) :501-516
[3]  
Deutschmann O., 2012, DETCHEM SOFTWARE PAC
[4]   Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells [J].
Ebbesen, Sune Dalgaard ;
Knibbe, Ruth ;
Mogensen, Mogens .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) :F482-F489
[5]   Analysis of self-sustaining recuperative solid oxide electrolysis systems [J].
Gopalan, Sriram ;
Mosleh, Mohsen ;
Hartvigsen, Joseph J. ;
McConnell, Robert D. .
JOURNAL OF POWER SOURCES, 2008, 185 (02) :1328-1333
[6]   3D CFD model of a multi-cell high-temperature electrolysis stack [J].
Hawkes, Grant ;
O'Brien, James ;
Stoots, Carl ;
Hawkes, Brian .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :4189-4197
[7]   Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology [J].
Herring, J. Stephen ;
O'Brien, James E. ;
Stoots, Carl M. ;
Hawkes, G. L. ;
Hartvigsen, Joseph J. ;
Shahnam, Mehrdad .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (04) :440-450
[8]   A novel system for the production of pure hydrogen from natural gas based on solid oxide fuel cell-solid oxide electrolyzer [J].
Iora, P. ;
Taher, M. A. A. ;
Chiesa, P. ;
Brandon, N. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (22) :12680-12687
[9]   High efficiency process for the production of pure oxygen based on solid oxide fuel cell-solid oxide electrolyzer technology [J].
Iora, Paolo ;
Chiesa, Paolo .
JOURNAL OF POWER SOURCES, 2009, 190 (02) :408-416
[10]   CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes [J].
Janardhanan, Vinod M. ;
Deutschmann, Olaf .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :1192-1202