Bisection and squares in genus 2

被引:2
作者
Miret, Josep M. [1 ]
Pujolas, Jordi [1 ]
Theriault, Nicolas [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida, Spain
[2] Univ Bio Bio, Dept Matemat, Concepcion, Chile
关键词
Hyperelliptic curves; Genus; 2; Divisor class; Bisection; Efficient computation; HYPERELLIPTIC-CURVE; FINITE-FIELDS;
D O I
10.1016/j.ffa.2015.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how to compute the pre-images of multiplication-by-2 in Jacobians of genus 2 curves C : y(2) = f (x) over F-q with q odd. We characterize D = [u(x),v(x)] is an element of 2Jac(C)(F-q) in terms of the quadratic character of u(x) at the roots of f (x) in imaginary models, and in terms of the quadratic character of the quotients of u(x) at pairs of roots of f (x) in real models. Our method reduces the problem to the computation of at most 5 square roots over the splitting field of f(x) plus the solution of a system of linear equations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 188
页数:19
相关论文
共 11 条
[1]  
CANTOR DG, 1987, MATH COMPUT, V48, P95, DOI 10.1090/S0025-5718-1987-0866101-0
[2]  
Cohen H., 2005, HDB ELLIPTIC HYPERRE
[3]  
Flynn E. V., 1996, LMS LECT NOTE SERIES, V230
[4]  
Galbraith SD, 2008, LECT NOTES COMPUT SC, V5011, P342, DOI 10.1007/978-3-540-79456-1_23
[5]   Genus 2 point counting over prime fields [J].
Gaudry, Pierrick ;
Schost, Eric .
JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (04) :368-400
[6]  
Kitamura I, 2005, LECT NOTES COMPUT SC, V3574, P146
[7]   EXPLICIT 2-POWER TORSION OF GENUS 2 CURVES OVER FINITE FIELDS [J].
Miret, Josep M. ;
Pujolas, Jordi ;
Rio, Anna .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (02) :155-168
[8]   Bisection for genus 2 curves in odd characteristic [J].
Miret, Josep M. ;
Pujolas, Jordi ;
Rio, Anna .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (04) :55-60
[9]   Contributions to the theory of finite fields [J].
Ore, Oystein .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1934, 36 (1-4) :243-274
[10]   Real and imaginary quadratic representations of hyperelliptic function fields [J].
Paulus, S ;
Rück, HG .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1233-1241