Effects of a grain boundary loop on the thermal conductivity of graphene: A molecular dynamics study

被引:29
作者
Khosravian, N. [1 ,2 ]
Samani, M. K. [2 ]
Loh, G. C. [1 ]
Chen, G. C. K. [3 ]
Baillargeat, D. [1 ]
Tay, B. K. [1 ,2 ]
机构
[1] CINTRA CNRS NTU THALES, Singapore 637553, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] BC Photon Technol Co, Richmond, BC V7E 1G9, Canada
关键词
Molecular dynamic simulation; Thermal conductivity; Graphene; NANORIBBONS; TRANSPORT; DEFECT;
D O I
10.1016/j.commatsci.2013.06.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal transport in graphene with one type of grain boundary loop was investigated using non-equilibrium molecular dynamics simulation method. The results showed that thermal conductivity is very sensitive to defect concentration. It rapidly decreases in the presence of a defect. This is attributed the phonon defects scattering which shorten the phonon mean free paths leading to the reduction in thermal conductivity. Furthermore, temperature dependency of thermal conductivity of pristine and defected graphene was determined. The results indicated that thermal conductivity of defect-free graphene varies significantly with temperature, while thermal conductivity of graphene with defect remains nearly invariant with the temperature of the system. This implies the possibility of phonon-defect scattering domination over Umklapp phonon-phonon scattering in graphene with defect. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:132 / 135
页数:4
相关论文
共 21 条
[1]   Thermal transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations [J].
Bagri, Akbar ;
Kim, Sang-Pil ;
Ruoff, Rodney S. ;
Shenoy, Vivek B. .
NANO LETTERS, 2011, 11 (09) :3917-3921
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[4]   Grain boundary loops in graphene [J].
Cockayne, Eric ;
Rutter, Gregory M. ;
Guisinger, Nathan P. ;
Crain, Jason N. ;
First, Phillip N. ;
Stroscio, Joseph A. .
PHYSICAL REVIEW B, 2011, 83 (19)
[5]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[6]   Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene [J].
Grantab, Rassin ;
Shenoy, Vivek B. ;
Ruoff, Rodney S. .
SCIENCE, 2010, 330 (6006) :946-948
[7]   Atomic-scale investigation of graphene formation on 6H-SiC(0001) [J].
Guisinger, N. P. ;
Rutter, G. M. ;
Crain, J. N. ;
Heiliger, C. ;
First, P. N. ;
Stroscio, J. A. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (04) :932-937
[8]   Thermal conductivity of graphene nanoribbons [J].
Guo, Zhixin ;
Zhang, Dier ;
Gong, Xin-Gao .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[9]   Mechanical and thermal transport properties of graphene with defects [J].
Hao, Feng ;
Fang, Daining ;
Xu, Zhiping .
APPLIED PHYSICS LETTERS, 2011, 99 (04)
[10]   Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study [J].
Hu, Jiuning ;
Ruan, Xiulin ;
Chen, Yong P. .
NANO LETTERS, 2009, 9 (07) :2730-2735