Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Starch-Based Biodegradable Composites

被引:168
作者
Wu, Kun [1 ]
Hu, Yuan [1 ]
Song, Lei [1 ]
Lu, Hongdian [1 ,2 ]
Wang, Zhengzhou [1 ,3 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Hefei Univ, Dept Chem & Mat Engn, Hefei 230022, Anhui, Peoples R China
[3] Tongji Univ, Sch Mat Sci & Engn, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
AMMONIUM POLYPHOSPHATE; FIRE RETARDANCY; MECHANICAL-PROPERTIES; BLENDS; XPS; POLYETHYLENE; STABILITY; FILLERS; SYSTEM; FILMS;
D O I
10.1021/ie801230h
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Biodegradable PVA/glycerol-plasticized thermoplastic starch (TPS) and its intumescent flame retardant composites are prepared. Microencapsulated ammonium polyphosphate (MCAPP) was used not only to utilize the charring capacity of the polyhydric compounds but also to restrain the reaction between APP and starch during processing. The flame retardancy and thermal stability of TPS and TPS/MCAPP were characterized by LOI, UL 94, TG, and microscale combustion calorimeter (MCC). TPS/MCAPP composites with only 2 wt % MCAPP can pass V-0 in UL 94 test. However, neat TPS cannot pass any rating. The presence of MCAPP can reduce the total heat release of TPS sharply in MCC test. The thermal degradation and gas products of TPS and TPS/MCAPP were monitored by TG-FTIR and dynamic FTIR. XPS and SEM measurements were utilized to investigate the chemical structure, as well as the surface morphology of the residual char.
引用
收藏
页码:3150 / 3157
页数:8
相关论文
共 29 条
[1]   Thermal degradation and physical aging of poly(lactic acid) and its blends with starch [J].
Acioli-Moura, Ricardo ;
Sun, Xiuzhi Susan .
POLYMER ENGINEERING AND SCIENCE, 2008, 48 (04) :829-836
[2]   Effect of fillers on the fire retardancy of intumescent polypropylene compounds [J].
Almeras, X ;
Le Bras, M ;
Hornsby, P ;
Bourbigot, S ;
Marosi, G ;
Keszei, S ;
Poutch, F .
POLYMER DEGRADATION AND STABILITY, 2003, 82 (02) :325-331
[3]   Effect of fillers on fire retardancy of intumescent polypropylene blends [J].
Almeras, X ;
Le Bras, M ;
Poutch, F ;
Bourbigot, S ;
Marosi, G ;
Anna, P .
MACROMOLECULAR SYMPOSIA, 2003, 198 :435-447
[4]  
[Anonymous], 1975, Introduction to infrared and Raman spectroscopy
[5]   Pyrolysis of saccharide tobacco ingredients: a TGA-FTIR investigation [J].
Baker, RR ;
Coburn, S ;
Liu, C ;
Tetteh, J .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2005, 74 (1-2) :171-180
[6]   Recent advances for intumescent polymers [J].
Bourbigot, S ;
Le Bras, M ;
Duquesne, S ;
Rochery, M .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2004, 289 (06) :499-511
[7]   XPS study of an intumescent coating .2. Application to the ammonium polyphosphate pentaerythritol ethylenic terpolymer fire retardant system with and without synergistic agent [J].
Bourbigot, S ;
LeBras, M ;
Delobel, R ;
Gengembre, L .
APPLIED SURFACE SCIENCE, 1997, 120 (1-2) :15-29
[8]   Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6 [J].
Braun, Ulrike ;
Schartel, Bernhard ;
Fichera, Mario A. ;
Jaeger, Christian .
POLYMER DEGRADATION AND STABILITY, 2007, 92 (08) :1528-1545
[9]   INFLUENCE OF FIRE RETARDANT, AMMONIUM POLYPHOSPHATE, ON THERMAL-DEGRADATION OF POLY(METHYL METHACRYLATE) [J].
CAMINO, G ;
GRASSIE, N ;
MCNEILL, IC .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1978, 16 (01) :95-106
[10]   MECHANICAL AND MICROSTRUCTURAL PROPERTIES OF PECTIN STARCH FILMS [J].
COFFIN, DR ;
FISHMAN, ML ;
COOKE, PH .
JOURNAL OF APPLIED POLYMER SCIENCE, 1995, 57 (06) :663-670