Spanning trees from the commute times of random walks on graphs

被引:0
|
作者
Qiu, Huaijun [1 ]
Hancock, Edwin R. [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
来源
IMAGE ANALYSIS AND RECOGNITION, PT 2 | 2006年 / 4142卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper exploits the properties of the commute time for the purposes of graph matching. Our starting point is the lazy random walk on the graph, which is determined by the heat-kernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterise the random walk using the IN commute time between nodes, and show how this quantity may be computed from the Laplacian spectrum using the discrete Green's function. We use the commute-time to locate the minimum spanning tree of the graph. The spanning trees located using commute time prove to be stable to structural variations. We match the graphs by applying a tree-matching method to the spanning trees. We experiment with the method on synthetic and real-world image data, where it proves to to be effective.
引用
收藏
页码:375 / 385
页数:11
相关论文
共 50 条
  • [1] Commute times of random walks on trees
    Konsowa, Mokhtar
    Al-Awadhi, Fahimah
    Telcs, Andras
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) : 1014 - 1021
  • [2] Commute Times of random Walks on Trees
    Konsowa, Mokhtar
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1463 - 1466
  • [3] SPANNING TREES AND RANDOM WALKS ON WEIGHTED GRAPHS
    Chang, Xiao
    Xu, Hao
    Yau, Shing-Tung
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 273 (01) : 241 - 255
  • [4] A SPANNING TREE METHOD FOR BOUNDING HITTING TIMES OF RANDOM WALKS ON GRAPHS
    Cogill, Randy
    Peng, Cheng
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 808 - 820
  • [5] Hitting times, commute times, and cover times for random walks on random hypergraphs
    Helali, Amine
    Loewe, Matthias
    STATISTICS & PROBABILITY LETTERS, 2019, 154
  • [6] From elongated spanning trees to vicious random walks
    Gorsky, A.
    Nechaev, S.
    Poghosyan, V. S.
    Priezzhev, V. B.
    NUCLEAR PHYSICS B, 2013, 870 (01) : 55 - 77
  • [7] Spanning trees in random graphs
    Montgomery, Richard
    ADVANCES IN MATHEMATICS, 2019, 356
  • [8] COMMUTE TIMES AND THE EFFECTIVE RESISTANCES OF RANDOM TREES
    Al-Awadhi, Fahimah
    Konsowa, Mokhtar
    Najeh, Zainab
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2009, 23 (04) : 649 - 660
  • [9] Random Selection of Spanning Trees on Graphs
    Luis Perez-Perez, Sergio
    Benito Morales-Luna, Guillermo
    Davino Sagols-Troncoso, Feliu
    COMPUTACION Y SISTEMAS, 2012, 16 (04): : 457 - 469
  • [10] EMBEDDING SPANNING TREES IN RANDOM GRAPHS
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1495 - 1500