Homoclinic orbits for first order hamiltonian systems possessing super-quadratic potentials

被引:11
作者
Xu, XJ [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
homoclinic orbit; Hamiltonian system; C-0-norm estimate; superquadratic potential;
D O I
10.1016/S0362-546X(01)00820-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The homoclinic orbits for first order hamiltonian systems possessing super-quadratic potentials were discussed. Two estimates on the bound of C0-norm of homoclinic orbits of the system were proved. Hamiltonian systems were studied with and without symmetry. Solutions were obtained by minimax procedure and the corresponding critical values were found to be bounded.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 9 条
[1]   Homoclinic solutions of Hamiltonian systems with symmetry [J].
Arioli, G ;
Szulkin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (02) :291-313
[2]  
COTIZELATI V, 1991, J AM MATH SOC, V4, P693
[3]   Infinitely many homoclinic orbits of a Hamiltonian system with symmetry [J].
Ding, YH ;
Girardi, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (03) :391-415
[4]   Homoclinic orbits of a Hamiltonian system [J].
Ding, YH ;
Willem, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05) :759-778
[5]   1ST ORDER ELLIPTIC-SYSTEMS AND THE EXISTENCE OF HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
HOFER, H ;
WYSOCKI, K .
MATHEMATISCHE ANNALEN, 1990, 288 (03) :483-503
[6]  
LONG Y, 1990, ANN SCUOLA NORM SUP, P35
[7]   Periodic solutions for a class of nonautonomous Hamiltonian systems [J].
Long, YM ;
Xu, XJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) :455-463
[8]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38
[9]   HOMOCLINIC ORBITS IN A 1ST ORDER SUPERQUADRATIC HAMILTONIAN SYSTEM - CONVERGENCE OF SUBHARMONIC ORBITS [J].
TANAKA, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :315-339