Kinetic layers and coupling conditions for nonlinear scalar equations on networks

被引:11
作者
Borsche, R. [1 ]
Klar, A. [1 ,2 ]
机构
[1] Tech Univ Kaiserslautern, Dept Math, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[2] Fraunhofer ITWM, Fraunhoferpl 1, D-67663 Kaiserslautern, Germany
关键词
coupling conditions; kinetic layer; kinetic half space problem; Burgers equation; BOUNDARY-VALUE-PROBLEM; CONSERVATION-LAWS; WELL-POSEDNESS; BOLTZMANN-EQUATION; APPROXIMATION; RELAXATION; MODEL; CHEMOTAXIS; JUNCTION; SYSTEM;
D O I
10.1088/1361-6544/aabc91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a kinetic relaxation model and an associated macroscopic scalar nonlinear hyperbolic equation on a network. Coupling conditions for the macroscopic equations are derived from the kinetic coupling conditions via an asymptotic analysis near the nodes of the network. This analysis leads to the combination of kinetic half-space problems with Riemann problems at the junction. Detailed numerical comparisons between the different models show the agreement of the coupling conditions for the case of tripod networks.
引用
收藏
页数:30
相关论文
共 34 条
[1]   WELL-POSEDNESS OF GENERAL BOUNDARY-VALUE PROBLEMS FOR SCALAR CONSERVATION LAWS [J].
Andreianov, Boris ;
Sbihi, Karima .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) :3763-3806
[2]   WELL-POSEDNESS FOR VANISHING VISCOSITY SOLUTIONS OF SCALAR CONSERVATION LAWS ON A NETWORK [J].
Andreianov, Boris P. ;
Coclite, Giuseppe Maria ;
Donadello, Carlotta .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (11) :5913-5942
[3]   Kinetic approximation of a boundary value problem for conservation laws [J].
Aregba-Driollet, D ;
Milisic, V .
NUMERISCHE MATHEMATIK, 2004, 97 (04) :595-633
[4]   Gas flow in pipeline networks [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :41-56
[5]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[6]  
Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI DOI 10.1080/03605307908820117
[7]  
Bensoussan A., 1979, Publ. Res. Inst. Math. Sci., V15, P53, DOI [DOI 10.2977/PRIMS/1195188427, 10.2977/prims/1195188427]
[8]   Kinetic and related macroscopic models for chemotaxis on networks [J].
Borsche, R. ;
Kall, J. ;
Klar, A. ;
Pham, T. N. H. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (06) :1219-1242
[9]  
Borsche R, 2018, SIAM SCI COMP
[10]   A HYPERBOLIC MODEL OF CHEMOTAXIS ON A NETWORK: A NUMERICAL STUDY [J].
Bretti, G. ;
Natalini, R. ;
Ribot, M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01) :231-258