Fractional Fourier transform for partially coherent Gaussian-Schell model beams

被引:75
作者
Lin, Q [1 ]
Cai, YJ
机构
[1] Zhejiang Univ, Inst Opt, Hangzhou 310028, Peoples R China
[2] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310028, Peoples R China
关键词
D O I
10.1364/OL.27.001672
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The fractional Fourier transform (FRT) is applied to partially coherent twisted anisotropic Gaussian-Schell model (GSM) beams based directly on the cross-spectral density. An analytical and concise formula is derived for the cross-spectral density of partially coherent twisted anisotropic GSM beams passing through a FRT system in terms of the tensor method. The corresponding tensor ABCD law for performing a FRT is obtained. The connection between the FRT formula and the generalized Collins formula for partially coherent beams is discussed. The formulas derived provide a powerful tool for analyzing and calculating the FRTs of partially coherent beams. (C) 2002 Optical Society of America.
引用
收藏
页码:1672 / 1674
页数:3
相关论文
共 24 条
[1]  
[Anonymous], 2000, FRACTIONAL FOURIER T
[2]   THE USE OF PARTIALLY COHERENT-LIGHT TO REDUCE THE EFFICIENCY OF SILVER-HALIDE NOISE GRATINGS [J].
BELENDEZ, A ;
CARRETERO, L ;
FIMIA, A .
OPTICS COMMUNICATIONS, 1993, 98 (4-6) :236-240
[3]   Synthesis of mutual intensity distributions using the fractional Fourier transform [J].
Erden, MF ;
Ozaktas, HM ;
Mendlovic, D .
OPTICS COMMUNICATIONS, 1996, 125 (4-6) :288-301
[4]   Propagation of mutual intensity expressed in terms of the fractional Fourier transform [J].
Erden, MF ;
Ozaktas, HM ;
Mendlovic, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (05) :1068-1071
[5]   SCALING LAW AND SIMULTANEOUS OPTICAL IMPLEMENTATION OF VARIOUS ORDER FRACTIONAL FOURIER-TRANSFORMS [J].
JIANG, ZP .
OPTICS LETTERS, 1995, 20 (23) :2408-2410
[6]   RANDOM PHASING OF HIGH-POWER LASERS FOR UNIFORM TARGET ACCELERATION AND PLASMA-INSTABILITY SUPPRESSION [J].
KATO, Y ;
MIMA, K ;
MIYANAGA, N ;
ARINAGA, S ;
KITAGAWA, Y ;
NAKATSUKA, M ;
YAMANAKA, C .
PHYSICAL REVIEW LETTERS, 1984, 53 (11) :1057-1060
[7]   Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams [J].
Lin, Q ;
Cai, YJ .
OPTICS LETTERS, 2002, 27 (04) :216-218
[8]   Collins formula in frequency-domain and fractional Fourier transforms [J].
Liu, ZY ;
Wu, XY ;
Fan, DY .
OPTICS COMMUNICATIONS, 1998, 155 (1-3) :7-11
[9]   Fractional Hilbert transform [J].
Lohmann, AW ;
Mendlovic, D ;
Zalevsky, Z .
OPTICS LETTERS, 1996, 21 (04) :281-283
[10]   IMAGE ROTATION, WIGNER ROTATION, AND THE FRACTIONAL FOURIER-TRANSFORM [J].
LOHMANN, AW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (10) :2181-2186