Least action nodal solutions for a quasilinear defocusing Schrodinger equation with supercritical nonlinearity

被引:19
|
作者
Yang, Minbo [1 ]
Santos, Carlos Alberto [2 ]
Zhou, Jiazheng [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Quasilinear Schrodinger equation; least energy nodal solutions; supercritical growth; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS;
D O I
10.1142/S0219199718500268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of least action nodal solutions for the quasilinear defocusing Schrodinger equation in H-1(R-N): -Delta u vertical bar k/2u Delta u2 vertical bar V(x)u = g(u)vertical bar lambda vertical bar u vertical bar(p-2)u, where N >= 3, V (x) is a positive continuous potential, g(u) is of subcritical growth, p >= 2* = 2N/(N - 2) and lambda, k are two non- negative parameters. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of least action nodal solution via deformation flow arguments and L-infinity-estimates.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Bifurcation and standing wave solutions for a quasilinear Schrodinger equation
    Dai, Guowei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 939 - 968
  • [32] Existence of solutions for a quasilinear Schrodinger equation with vanishing potentials
    Aires, Jose F. L.
    Souto, Marco A. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 924 - 946
  • [33] Solutions for a quasilinear Schrodinger equation: Subcritical and critical cases
    dos Santos, Gelson C. G.
    Fontinele, Laila C.
    Nascimentoa, Rubia G.
    Arrudab, Suellen Cristina Q.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (05)
  • [34] LOCALIZED NODAL SOLUTIONS FOR PARAMETER- DEPENDENT QUASILINEAR SCHRODINGER EQUATIONS
    He, Rui
    Liu, Xiangqing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [35] Positive solutions for a class of supercritical quasilinear Schrodinger equations
    Deng, Yin
    Zhang, Xiaojing
    Jia, Gao
    AIMS MATHEMATICS, 2022, 7 (04): : 6565 - 6582
  • [36] Infinitely many radial and non-radial solutions to a quasilinear Schrodinger equation
    Yang, Xianyong
    Wang, Wenbo
    Zhao, Fukun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 : 158 - 168
  • [37] Multiplicity of Solutions for a Sublinear Quasilinear Schrodinger Equation
    Bao, Gui
    Cheng, Tingzhi
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (05): : 1249 - 1258
  • [38] Ground state solutions for the quasilinear Schrodinger equation
    Guo, Yuxia
    Tang, Zhongwei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3235 - 3248
  • [39] Positive solutions for a quasilinear Schrodinger equation involving Hardy potential and critical exponent
    Zeng, Xiaoyu
    Zhang, Yimin
    Zhou, Huan-Song
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (06)
  • [40] Positive solutions for a critical quasilinear Schrodinger equation
    Xue, Liang
    Xu, Jiafa
    O'Regan, Donal
    AIMS MATHEMATICS, 2023, 8 (08): : 19566 - 19581