Convergence of restarted Krylov subspaces to invariant subspaces

被引:31
|
作者
Beattie, C [1 ]
Embree, M
Rossi, J
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
Krylov subspace methods; Arnoldi algorithm; Lanczos algorithm; polynomial restarts; invariant subspaces; eigenvalues; pseudospectra; perturbation theory; potential theory; Zolotarev-type polynomial approximation problems;
D O I
10.1137/S0895479801398608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The performance of Krylov subspace eigenvalue algorithms for large matrices can be measured by the angle between a desired invariant subspace and the Krylov subspace. We develop general bounds for this convergence that include the effects of polynomial restarting and impose no restrictions concerning the diagonalizability of the matrix or its degree of nonnormality. Associated with a desired set of eigenvalues is a maximum "reachable invariant subspace" that can be developed from the given starting vector. Convergence for this distinguished subspace is bounded in terms involving a polynomial approximation problem. Elementary results from potential theory lead to convergence rate estimates and suggest restarting strategies based on optimal approximation points (e.g., Leja or Chebyshev points); exact shifts are evaluated within this framework. Computational examples illustrate the utility of these results. Origins of superlinear effects are also described.
引用
收藏
页码:1074 / 1109
页数:36
相关论文
共 50 条
  • [1] ON A PERTURBATION BOUND FOR INVARIANT SUBSPACES OF MATRICES
    Karow, Michael
    Kressner, Daniel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (02) : 599 - 618
  • [2] Quasiaffinity and invariant subspaces
    A. Mello
    C. S. Kubrusly
    Archiv der Mathematik, 2016, 107 : 173 - 184
  • [3] Quasiaffinity and invariant subspaces
    Mello, A.
    Kubrusly, C. S.
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 173 - 184
  • [4] The Proper Elements and Simple Invariant Subspaces
    Djordjevic, Slavisa V.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2012, 3 (01): : 17 - 23
  • [5] NUMERICAL CONSIDERATIONS IN COMPUTING INVARIANT SUBSPACES
    DONGARRA, JJ
    HAMMARLING, S
    WILKINSON, JH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 145 - 161
  • [6] On the Invariant Subspaces of the Fractional Integral Operator
    Gurdal, Mehmet
    Nabiev, Anar Adiloglu
    Ayyildiz, Meral
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (02):
  • [7] Invariant Subspaces and the Exponential Map
    A. Atzmon
    G. Godefroy
    N. J. Kalton
    Positivity, 2004, 8 : 101 - 107
  • [8] Approximation by group invariant subspaces
    Barbieri, Davide
    Cabrelli, Carlos
    Hernandez, Eugenio
    Molter, Ursula
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 76 - 100
  • [9] CHARACTERIZATION OF INVARIANT SUBSPACES IN THE POLYDISC
    Maji, Amit
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    Sankar, T. R.
    JOURNAL OF OPERATOR THEORY, 2019, 82 (02) : 445 - 468
  • [10] Polycyclic codes as invariant subspaces
    Shi, Minjia
    Li, Xiaoxiao
    Sepasdar, Zahra
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68