Platelet precipitate in an age-hardening Mg-Zn-Gd alloy

被引:27
|
作者
Koizumi, T. [1 ]
Egami, M. [1 ,2 ]
Yamashita, K. [1 ]
Abe, E. [1 ,2 ]
机构
[1] Univ Tokyo, Dept Mat Sci & Engn, Tokyo 1138656, Japan
[2] Natl Inst Mat Sci, Res Ctr Struct Mat, Tsukuba, Ibaraki 3050047, Japan
关键词
Magnesium alloys; Fine precipitations; Atomic structure; Electron microscopy; First principles calculations; STACKING ORDERED STRUCTURE; PERIOD SUPERLATTICE PHASE; MECHANICAL-PROPERTIES; ELECTRON-MICROSCOPY; MG97ZN1YB2; ALLOYS; Y-ALLOY; 14H; STRENGTH; CRYSTAL; 18R;
D O I
10.1016/j.jallcom.2018.04.136
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structure of a unique platelet precipitate with a three close-packed layer thickness, which occurred in a Mg-1 at.%Zn-2at.%Gd alloy aged at low temperatures (<similar to 500 K), has been determined based on scanning transmission electron microscopy and first principles calculations. The platelet precipitate is constructed by well-defined Gd networks that cause significant atomic displacements in the adjacent close-packed layer, in which the atomic sites are preferentially occupied by Zn atoms. Local Zn concentrations at the reconstructed-layer have been successfully tuned according to a similar manner of Vegard's law by reference to the local Gd-Gd interatomic distance along the c-axis. Therefore, the present platelet precipitate is found to be not a simple ordered hexagonal-close-packed Mg-Gd as previously reported, but a reconstructed ternary Mg-Zn-Gd structure. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 50 条
  • [1] Solidification and Age Hardening Behaviour of Mg-Zn-Gd Alloys
    Li, J. H.
    Schumacher, P.
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN SOLIDIFICATION PROCESSES, 2012, 27
  • [2] Precipitation microstructure and age-hardening response of an Mg-Gd-Nd-Zn-Zr alloy
    Li, J. H.
    Sha, G.
    Wang, T. Y.
    Jie, W. Q.
    Ringer, S. P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 : 1 - 6
  • [3] Quantitative evaluation of creep strain distribution in an extruded Mg-Zn-Gd alloy of multimodal microstructure
    Jono, Yuri
    Yamasaki, Michiaki
    Kawamura, Yoshihito
    ACTA MATERIALIA, 2015, 82 : 198 - 211
  • [4] On the atomic structure of γ" phase in Mg-Zn-Gd alloy
    Gu, Xin-Fu
    Furuhara, Tadashi
    Kiguchi, Takanori
    Konno, Toyohiko J.
    Chen, Leng
    Yang, Ping
    SCRIPTA MATERIALIA, 2018, 146 : 64 - 67
  • [5] Nanoscale precipitations in deformed dilute alloying Mg-Zn-Gd alloy
    Miao, Hongwei
    Huang, Hua
    Fan, Shihao
    Tan, Jinyun
    Wang, Zhongchang
    Ding, Wenjiang
    Yuan, Guangyin
    MATERIALS & DESIGN, 2020, 196
  • [6] Age-hardening and age-softening in nanocrystalline Mg-Gd-Y-Zr alloy
    Yu, Shilun
    Wan, Yingchun
    Liu, Chuming
    Wang, Jian
    MATERIALS CHARACTERIZATION, 2019, 156
  • [7] On the planar anisotropy of ductility in a dilute Mg-Zn-Gd alloy
    Huang, Xinde
    Wang, Li
    Zhou, Yi
    Huang, Guangjie
    Xin, Yunchang
    Cao, Yu
    Li, Wei
    Xiang, Shihua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 894
  • [8] Age-Hardening Behavior and Phase Transformation of Mg-9.2Gd-1.9Y-1.8Zn-0.5Zr Alloy
    Liu, Yunfang
    Li, Zhaocan
    Yang, Yaqin
    Yi, Ming
    Yu, Jianmin
    Zhang, Zhimin
    Huang, Huagui
    JOM, 2024, 76 (03) : 1650 - 1658
  • [9] Microstructural evolution and age-hardening behavior of quasicrystal-reinforced Mg-Dy-Zn alloy
    Bi, Guang-Li
    Han, Yu-Xiang
    Jiang, Jing
    Jiang, Chun-Hong
    Li, Yuan-Dong
    Ma, Ying
    RARE METALS, 2019, 38 (08) : 739 - 745
  • [10] EFFECT OF Zn/Gd RATIO ON PHASE CONSTITUTIONS IN Mg-Zn-Gd ALLOYS
    Zhang, S.
    Yuan, G. Y.
    Lu, C.
    Ding, W. J.
    MAGNESIUM TECHNOLOGY 2011, 2011, : 157 - 159