Stable factorization of Hankel and Hankel-like matrices
被引:0
|
作者:
Olshevsky, V
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Math & Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Math & Comp Sci, Atlanta, GA 30303 USA
Olshevsky, V
[1
]
论文数: 引用数:
h-index:
机构:
Stewart, M
[1
]
机构:
[1] Georgia State Univ, Dept Math & Comp Sci, Atlanta, GA 30303 USA
来源:
ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES,AND IMPLEMENTATIONS IX
|
1999年
/
3807卷
关键词:
structured matrices;
Hankel matrices;
fast algorithms;
look-ahead;
numerical stability;
D O I:
10.1117/12.367650
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
This paper gives displacement structure algorithms for the factorization positive definite and indefinite Hankel and Hankel-like matrices. The positive definite algorithm uses orthogonal symplectic transformations in place of the Sigma-orthogonal transformations used in Toeplitz algorithms. The indefinite algorithm uses a look-ahead step and is based on the observation that displacement structure algorithms for Hankel factorization have a natural and simple block generalization. Both algorithms can be applied to Hankel-like matrices of arbitrary displacement rank.