All-dielectric rod antenna array for terahertz communications

被引:65
作者
Withayachumnankul, Withawat [1 ]
Yamada, Ryoumei [2 ]
Fujita, Masayuki [2 ]
Nagatsuma, Tadao [2 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[2] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
基金
日本科学技术振兴机构; 澳大利亚研究理事会;
关键词
WAVE-GUIDE ANTENNA; MILLIMETER WAVES; WIRELESS LINK; RESONATOR; RADIATION; SILICON; PLANAR; LENS;
D O I
10.1063/1.5023787
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems. (c) 2018 Author(s).
引用
收藏
页数:13
相关论文
共 30 条
[1]   Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon [J].
Dai, JM ;
Zhang, JQ ;
Zhang, WL ;
Grischkowsky, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (07) :1379-1386
[2]   340 GHz On-Chip 3-D Antenna With 10 dBi Gain and 80% Radiation Efficiency [J].
Deng, Xiao-Dong ;
Li, Yihu ;
Liu, Chao ;
Wu, Wen ;
Xiong, Yong-Zhong .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2015, 5 (04) :619-627
[3]   Modeling and Simulation of Terahertz Resonant Tunneling Diode-Based Circuits [J].
Diebold, Sebastian ;
Nakai, Shunsuke ;
Nishio, Kousuke ;
Kim, Jaeyoung ;
Tsuruda, Kazuisao ;
Mukai, Toshikazu ;
Fujita, Masayuki ;
Nagatsuma, Tadao .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2016, 6 (05) :716-723
[4]  
Fujita M., 2014, U. S. patent, Patent No. [2014/ 0248020, 20140248020]
[5]   Silicon nanostructure cloak operating at optical frequencies [J].
Gabrielli, Lucas H. ;
Cardenas, Jaime ;
Poitras, Carl B. ;
Lipson, Michal .
NATURE PHOTONICS, 2009, 3 (08) :461-463
[6]   Wide Band mm- and Sub-mm-Wave Dielectric Rod Waveguide Antenna [J].
Generalov, Andrey A. ;
Haimakainen, Johannes A. ;
Lioubtchenko, Dmitri V. ;
Raisanen, Antti V. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2014, 4 (05) :568-574
[7]   Planar Dielectric Rod Antenna for Gigabyte Chip-to-Chip Communication [J].
Ghassemi, Nasser ;
Wu, Ke .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (10) :4924-4928
[8]  
Hanham Stephen M., 2009, 2009 3rd European Conference on Antennas and Propagation. EuCAP 2009, P1645
[9]   D-Band On-Chip Higher-Order-Mode Dielectric-Resonator Antennas Fed by Half-Mode Cavity in CMOS Technology [J].
Hou, Debin ;
Hong, Wei ;
Goh, Wang-Ling ;
Chen, Jixin ;
Xiong, Yong-Zhong ;
Hu, Sanming ;
Madihian, Mohammad .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2014, 56 (03) :80-89
[10]   Planar, flattened Luneburg lens at infrared wavelengths [J].
Hunt, John ;
Tyler, Talmage ;
Dhar, Sulochana ;
Tsai, Yu-Ju ;
Bowen, Patrick ;
Larouche, Stephane ;
Jokerst, Nan M. ;
Smith, David R. .
OPTICS EXPRESS, 2012, 20 (02) :1706-1713