Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems

被引:5
作者
Nakatsukasa, Yuji [1 ]
Noferini, Vanni [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
关键词
Sylvester's law of inertia; Generalized indefinite eigenvalue problem; Number of eigenvalues in an interval; Congruence transformation; Nonlinear eigenvalue problems; MATRIX POLYNOMIALS; CANONICAL-FORMS; VECTOR-SPACES; LINEARIZATIONS; DECOMPOSITION; EQUIVALENCE;
D O I
10.1016/j.laa.2019.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different congruence transformations, but not for the indefinite case. In this paper we investigate the possible change in inertia under congruence for generalized Hermitian indefinite eigenproblems, and derive sharp bounds that show the inertia of the two individual matrices often still provides useful information about the eigenvalues of the pencil, especially when one of the matrices is almost definite. A prominent application of the original Sylvester's law is in finding the number of eigenvalues in an interval. Our results can be used for estimating the number of real eigenvalues in an interval for generalized indefinite and nonlinear eigenvalue problems. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:272 / 296
页数:25
相关论文
共 34 条
  • [1] SOLVING THE TRUST-REGION SUBPROBLEM BY A GENERALIZED EIGENVALUE PROBLEM
    Adachi, Satoru
    Iwata, Satoru
    Nakatsukasa, Yuji
    Takeda, Akiko
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 269 - 291
  • [2] NLEVP: A Collection of Nonlinear Eigenvalue Problems
    Betcke, Timo
    Higham, Nicholas J.
    Mehrmann, Volker
    Schroeder, Christian
    Tisseur, Francoise
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [3] A generalization of the inertia theorem for quadratic matrix polynomials
    Bilir, B
    Chicone, C
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 280 (2-3) : 229 - 240
  • [4] Localization Theorems for Nonlinear Eigenvalue Problems
    Bindel, David
    Hood, Amanda
    [J]. SIAM REVIEW, 2015, 57 (04) : 585 - 607
  • [5] LOCATING THE EIGENVALUES OF MATRIX POLYNOMIALS
    Bini, Dario A.
    Noferini, Vanni
    Sharify, Meisam
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1708 - 1727
  • [6] Large vector spaces of block-symmetric strong linearizations of matrix polynomials
    Bueno, M. I.
    Dopico, F. M.
    Furtado, S.
    Rychnovsky, M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 477 : 165 - 210
  • [7] A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
    De Lathauwer, Lieven
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (03) : 642 - 666
  • [8] Spectral equivalence of matrix polynomials and the Index Sum Theorem
    De Teran, Fernando
    Dopico, Froilan. M.
    Mackey, D. Steven
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 264 - 333
  • [9] Demmel J, 1997, APPL NUMERICAL LINEA
  • [10] Efficient estimation of eigenvalue counts in an interval
    Di Napoli, Edoardo
    Polizzi, Eric
    Saad, Yousef
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (04) : 674 - 692