Ruin probabilities and decompositions for general perturbed risk processes

被引:58
作者
Huzak, M
Perman, M
Sikic, H
Vondracek, Z
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
[2] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
risk theory; ruin probability; Pollaczek-Hinchin formula; subordinator; spectrally negative Levy process;
D O I
10.1214/105051604000000332
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a general perturbed risk process with cumulative claims modelled by a subordinator with finite expectation, with the perturbation being a spectrally negative Levy process with zero expectation. We derive a Pollaczek-Hinchin type formula for the survival probability of that risk process, and give an interpretation of the formula based on the decomposition of the dual risk process at modified ladder epochs.
引用
收藏
页码:1378 / 1397
页数:20
相关论文
共 13 条
[1]  
[Anonymous], POISSON PROCESSES
[2]  
ASMUSSEN S, 1996, RUIN PROBABILITIES
[3]  
Bertoin J., 1996, Levy Processes
[4]   RISK THEORY FOR THE COMPOUND POISSON-PROCESS THAT IS PERTURBED BY DIFFUSION [J].
DUFRESNE, F ;
GERBER, HU .
INSURANCE MATHEMATICS & ECONOMICS, 1991, 10 (01) :51-59
[5]  
Dufresne F, 1991, ASTIN Bull: J IAA, V21, P177
[6]  
FURRER H, 1998, SCAND ACTUAR J, P59, DOI DOI 10.1080/03461238.1998.10413992
[7]  
KLUPPELBERG C, 2003, ANN APPL PROBAB, V14
[8]  
Revuz D, 2013, Continuous martingales and Brownian motion, V293
[9]  
Rolski T., 1998, Stochastic Processes for Insurance and finance
[10]  
Sato K., 2013, Cambridge Studies inAdvanced Mathematics, V2nd