Multiple Imputation: A Review of Practical and Theoretical Findings

被引:127
作者
Murray, Jared S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Informat Risk & Operat Management, Stat, 12110 Speedway B6500, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Stat & Data Sci, 12110 Speedway B6500, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Missing data; proper imputation; congeniality; chained equations; fully conditional specification; sequential regression multivariate imputation; GENERALIZED LINEAR-MODELS; BAYESIAN MIXTURE-MODELS; MISSING-DATA; CATEGORICAL-DATA; MEASUREMENT-ERROR; DATA SETS; VALUES; DIAGNOSTICS; MICE; BIAS;
D O I
10.1214/18-STS644
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple imputation is a straightforward method for handling missing data in a principled fashion. This paper presents an overview of multiple imputation, including important theoretical results and their practical implications for generating and using multiple imputations. A review of strategies for generating imputations follows, including recent developments in flexible joint modeling and sequential regression/chained equations/fully conditional specification approaches. Finally, we compare and contrast different methods for generating imputations on a range of criteria before identifying promising avenues for future research.
引用
收藏
页码:142 / 159
页数:18
相关论文
共 105 条
[21]   A comparison of inclusive and restrictive strategies in modern missing data procedures [J].
Collins, LM ;
Schafer, JL ;
Kam, CM .
PSYCHOLOGICAL METHODS, 2001, 6 (04) :330-351
[22]   Bayesian Mixture Models with Focused Clustering for Mixed Ordinal and Nominal Data [J].
DeYoreo, Maria ;
Reiter, Jerome P. ;
Hillygus, D. Sunshine .
BAYESIAN ANALYSIS, 2017, 12 (03) :679-703
[23]   Imputation through finite Gaussian mixture models [J].
Di Zio, Marco ;
Guarnera, Ugo ;
Luzi, Orietta .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) :5305-5316
[24]   Recursive partitioning for missing data imputation in the presence of interaction effects [J].
Doove, L. L. ;
Van Buuren, S. ;
Dusseldorp, E. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 :92-104
[25]  
Drechsler J., 2010, Multiple imputation of missing values in the wave 2007 of the IAB Establishment Panel
[26]   Nonparametric Bayes Modeling of Multivariate Categorical Data [J].
Dunson, David B. ;
Xing, Chuanhua .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) :1042-1051
[27]   Using a mixture model for multiple imputation in the presence of outliers: the 'Healthy for life' project [J].
Elliott, Michael R. ;
Stettler, Nicolas .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2007, 56 :63-78
[28]   Multiple correspondence analysis and the multilogit bilinear model [J].
Fithian, William ;
Josse, Julie .
JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 157 :87-102
[29]   CATEGORICAL DATA FUSION USING AUXILIARY INFORMATION [J].
Fosdick, Bailey K. ;
DeYoreo, Maria ;
Reiter, Jerome P. .
Annals of Applied Statistics, 2016, 10 (04) :1907-1929
[30]   Latent class based multiple imputation approach for missing categorical data [J].
Gebregziabher, Mulugeta ;
DeSantis, Stacia M. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) :3252-3262