Multiple Imputation: A Review of Practical and Theoretical Findings

被引:142
作者
Murray, Jared S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Informat Risk & Operat Management, Stat, 12110 Speedway B6500, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Stat & Data Sci, 12110 Speedway B6500, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Missing data; proper imputation; congeniality; chained equations; fully conditional specification; sequential regression multivariate imputation; GENERALIZED LINEAR-MODELS; BAYESIAN MIXTURE-MODELS; MISSING-DATA; CATEGORICAL-DATA; MEASUREMENT-ERROR; DATA SETS; VALUES; DIAGNOSTICS; MICE; BIAS;
D O I
10.1214/18-STS644
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple imputation is a straightforward method for handling missing data in a principled fashion. This paper presents an overview of multiple imputation, including important theoretical results and their practical implications for generating and using multiple imputations. A review of strategies for generating imputations follows, including recent developments in flexible joint modeling and sequential regression/chained equations/fully conditional specification approaches. Finally, we compare and contrast different methods for generating imputations on a range of criteria before identifying promising avenues for future research.
引用
收藏
页码:142 / 159
页数:18
相关论文
共 105 条
[1]   Diagnostics for multivariate imputations [J].
Abayomi, Kobi ;
Gelman, Andrew ;
Levy, Marc .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 :273-291
[2]   An Empirical Comparison of Multiple Imputation Methods for Categorical Data [J].
Akande, Olanrewaju ;
Li, Fan ;
Reiter, Jerome .
AMERICAN STATISTICIAN, 2017, 71 (02) :162-170
[3]   A Review of Hot Deck Imputation for Survey Non-response [J].
Andridge, Rebecca R. ;
Little, Roderick J. A. .
INTERNATIONAL STATISTICAL REVIEW, 2010, 78 (01) :40-64
[4]  
[Anonymous], 1984, Wadsworth Statistics/Probability Series
[5]  
[Anonymous], 2012, IMPUTING MISSING DAT
[6]  
[Anonymous], 2002, STAT ANAL MISSING DA, DOI [DOI 10.1002/9781119013563, 10.1002/9781119013563]
[7]  
[Anonymous], 2000, J. Official Statistics
[8]  
Arnold BC, 2001, STAT SCI, V16, P249
[9]   COMPATIBLE CONDITIONAL DISTRIBUTIONS [J].
ARNOLD, BC ;
PRESS, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) :152-156
[10]   MIMCA: multiple imputation for categorical variables with multiple correspondence analysis [J].
Audigier, Vincent ;
Husson, Francois ;
Josse, Julie .
STATISTICS AND COMPUTING, 2017, 27 (02) :501-518