Multiple Imputation: A Review of Practical and Theoretical Findings

被引:127
作者
Murray, Jared S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Informat Risk & Operat Management, Stat, 12110 Speedway B6500, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Stat & Data Sci, 12110 Speedway B6500, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Missing data; proper imputation; congeniality; chained equations; fully conditional specification; sequential regression multivariate imputation; GENERALIZED LINEAR-MODELS; BAYESIAN MIXTURE-MODELS; MISSING-DATA; CATEGORICAL-DATA; MEASUREMENT-ERROR; DATA SETS; VALUES; DIAGNOSTICS; MICE; BIAS;
D O I
10.1214/18-STS644
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple imputation is a straightforward method for handling missing data in a principled fashion. This paper presents an overview of multiple imputation, including important theoretical results and their practical implications for generating and using multiple imputations. A review of strategies for generating imputations follows, including recent developments in flexible joint modeling and sequential regression/chained equations/fully conditional specification approaches. Finally, we compare and contrast different methods for generating imputations on a range of criteria before identifying promising avenues for future research.
引用
收藏
页码:142 / 159
页数:18
相关论文
共 105 条
  • [1] Diagnostics for multivariate imputations
    Abayomi, Kobi
    Gelman, Andrew
    Levy, Marc
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 273 - 291
  • [2] An Empirical Comparison of Multiple Imputation Methods for Categorical Data
    Akande, Olanrewaju
    Li, Fan
    Reiter, Jerome
    [J]. AMERICAN STATISTICIAN, 2017, 71 (02) : 162 - 170
  • [3] A Review of Hot Deck Imputation for Survey Non-response
    Andridge, Rebecca R.
    Little, Roderick J. A.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2010, 78 (01) : 40 - 64
  • [4] [Anonymous], 1984, Wadsworth Statistics/Probability Series
  • [5] [Anonymous], 2012, IMPUTING MISSING DAT
  • [6] [Anonymous], 2002, STAT ANAL MISSING DA, DOI [DOI 10.1002/9781119013563, 10.1002/9781119013563]
  • [7] [Anonymous], 2000, J. Official Statistics
  • [8] Arnold BC, 2001, STAT SCI, V16, P249
  • [9] COMPATIBLE CONDITIONAL DISTRIBUTIONS
    ARNOLD, BC
    PRESS, SJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) : 152 - 156
  • [10] MIMCA: multiple imputation for categorical variables with multiple correspondence analysis
    Audigier, Vincent
    Husson, Francois
    Josse, Julie
    [J]. STATISTICS AND COMPUTING, 2017, 27 (02) : 501 - 518