Search for significant variables in nonparametric additive regression

被引:13
作者
Hardle, W [1 ]
Korostelev, A [1 ]
机构
[1] INST SYST ANAL, MOSCOW 117312, RUSSIA
关键词
additive regression model; dimensionality reduction; kernel estimation; nonparametric regression; variable selection;
D O I
10.1093/biomet/83.3.541
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonparametric additive regression is studied under the assumption that only a subset of nonparametric components is nonzero. Each of these nonzero components depends on its own particular explanatory variable, called a significant variable. The search problem for significant variables is considered and an algorithm is proposed which guarantees exponentially decreasing error probabilities as the sample size grows. We show that it is reasonable to use a rough bin estimator rather than to estimate the nonparametric components with the fastest possible rate.
引用
收藏
页码:541 / 549
页数:9
相关论文
共 13 条
[1]  
BHANSALI RJ, 1977, BIOMETRIKA, V64, P547, DOI 10.1093/biomet/64.3.547
[2]  
BUJA A, 1989, ANN STAT, V17, P453, DOI 10.1214/aos/1176347115
[3]   ON PROJECTION PURSUIT REGRESSION [J].
HALL, P .
ANNALS OF STATISTICS, 1989, 17 (02) :573-588
[4]  
Hardle W., 1990, Applied nonparametric regression, V19
[5]  
HARDLE W, 1995, J NONPARAMETR STAT, V5, P157
[6]  
Hastie T., 1990, Generalized additive model
[7]   PROJECTION PURSUIT [J].
HUBER, PJ .
ANNALS OF STATISTICS, 1985, 13 (02) :435-475
[8]   A KERNEL-METHOD OF ESTIMATING STRUCTURED NONPARAMETRIC REGRESSION-BASED ON MARGINAL INTEGRATION [J].
LINTON, O ;
NIELSEN, JP .
BIOMETRIKA, 1995, 82 (01) :93-100
[9]  
MALJUTOV MB, 1994, PROG PROBAB, V34, P253
[10]  
Park B. U., 1992, Computational Statistics, V7, P251