Runge-Kutta methods and viscous wave equations

被引:10
作者
Verwer, J. G. [1 ]
机构
[1] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
关键词
Primary: 65L05; 65L06; 65L20; 65M12; 65M20; G.1.7; G.1.8;
D O I
10.1007/s00211-009-0211-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical time integration of a class of viscous wave equations by means of Runge-Kutta methods. The viscous wave equation is an extension of the standard second-order wave equation including advection-diffusion terms differentiated in time. The viscous wave equation can be very stiff so that for time integration traditional explicit methods are no longer efficient. A-Stable Runge-Kutta methods are then very good candidates for time integration, in particular diagonally implicit ones. Special attention is paid to the question how the A-Stability property can be translated to this non-standard class of viscous wave equations.
引用
收藏
页码:485 / 507
页数:23
相关论文
共 24 条
[1]   Spectral/Rosenbrock discretizations without order reduction for linear parabolic problems [J].
Alonso-Mallo, I ;
Cano, B .
APPLIED NUMERICAL MATHEMATICS, 2002, 41 (02) :247-268
[2]   Causality, stokes' wave equation, and acoustic pulse propagation in a viscous fluid [J].
Buckingham, MJ .
PHYSICAL REVIEW E, 2005, 72 (02)
[3]   EFFICIENTLY IMPLEMENTABLE ALGEBRAICALLY STABLE RUNGE-KUTTA METHODS [J].
BURRAGE, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :245-258
[4]   STABILITY-CRITERIA FOR IMPLICIT RUNGE-KUTTA METHODS [J].
BURRAGE, K ;
BUTCHER, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :46-57
[5]  
Butcher J. C., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P358, DOI 10.1007/BF01931672
[6]  
BUTCHER J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[7]  
CROUZEIX M, 1970, NUMER MATH, V32, P75
[8]  
Dahlquist G., 1963, BIT Numer. Math., V3, P27, DOI DOI 10.1007/BF01963532
[9]  
Dekker K., 1984, Stability of Runge-Kutta methods for stiff nonlinear differential equations, CWI Monographs
[10]  
Douglas J, 2003, CONTEMP MATH, V329, P99