Hybrid quantum systems based on magnonics

被引:580
作者
Lachance-Quirion, Dany [1 ]
Tabuchi, Yutaka [1 ]
Gloppe, Arnaud [1 ]
Usami, Koji [1 ]
Nakamura, Yasunobu [1 ,2 ]
机构
[1] Univ Tokyo, RCAST, Meguro Ku, Tokyo 1538904, Japan
[2] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan
关键词
SINGLE MICROWAVE-PHOTON; LIGHT-SCATTERING; SPIN-WAVES; SUPERCONDUCTING CIRCUITS; STATES; GENERATION; IRON; INFORMATION; RELAXATION; TRANSITIONS;
D O I
10.7567/1882-0786/ab248d
中图分类号
O59 [应用物理学];
学科分类号
摘要
Engineered quantum systems enabling novel capabilities for computation and sensing have blossomed in the last decade. Architectures benefiting from combining complementary physical systems have emerged as promising approaches for quantum technologies. A new class of hybrid quantum systems based on collective spin excitations in ferromagnetic materials has led to the diverse set of platforms outlined in this review article. The coherent interaction between microwave cavity modes and spin-wave modes is presented as a key ingredient for the development of more complex hybrid systems. Indeed, quanta of excitation of the spin-wave modes, called magnons, can also interact coherently with optical photons, phonons, and superconducting qubits in the fields of cavity optomagnonics, cavity magnomechanics, and quantum magnonics, respectively. Notably, quantum optics experiments in magnetically-ordered solid-state systems are within reach thanks to quantum magnonics. Applications of hybrid quantum systems based on magnonics for quantum information processing and quantum sensing are briefly outlined. (C) 2019 The Japan Society of Applied Physics
引用
收藏
页数:17
相关论文
共 200 条
[1]   Magnon-photon coupling in the noncollinear magnetic insulator Cu2OSeO3 [J].
Abdurakhimov, L., V ;
Khan, S. ;
Panjwani, N. A. ;
Breeze, D. ;
Mochizuki, M. ;
Seki, S. ;
Tokura, Y. ;
Morton, J. J. L. ;
Kurebayashi, H. .
PHYSICAL REVIEW B, 2019, 99 (14)
[2]   Electron spin ensemble strongly coupled to a three-dimensional microwave cavity [J].
Abe, Eisuke ;
Wu, Hua ;
Ardavan, Arzhang ;
Morton, John J. L. .
APPLIED PHYSICS LETTERS, 2011, 98 (25)
[3]   Imaging precessional motion of the magnetization vector [J].
Acremann, Y ;
Back, CH ;
Buess, M ;
Portmann, O ;
Vaterlaus, A ;
Pescia, D ;
Melchior, H .
SCIENCE, 2000, 290 (5491) :492-495
[4]   Dielectric magnetic microparticles as photomagnonic cavities: Enhancing the modulation of near-infrared light by spin waves [J].
Almpanis, Evangelos .
PHYSICAL REVIEW B, 2018, 97 (18)
[5]   Cavity QED with Magnetically Coupled Collective Spin States [J].
Amsuess, R. ;
Koller, Ch. ;
Noebauer, T. ;
Putz, S. ;
Rotter, S. ;
Sandner, K. ;
Schneider, S. ;
Schramboeck, M. ;
Steinhauser, G. ;
Ritsch, H. ;
Schmiedmayer, J. ;
Majer, J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[6]   Engineering Topological Many-Body Materials in Microwave Cavity Arrays [J].
Anderson, Brandon M. ;
Ma, Ruichao ;
Owens, Clai ;
Schuster, David I. ;
Simon, Jonathan .
PHYSICAL REVIEW X, 2016, 6 (04)
[7]   Superradiant emission from colour centres in diamond [J].
Angerer, Andreas ;
Streltsov, Kirill ;
Astner, Thomas ;
Putz, Stefan ;
Sumiya, Hitoshi ;
Onoda, Shinobu ;
Isoya, Junichi ;
Munro, William J. ;
Nemoto, Kae ;
Schmiedmayer, Joerg ;
Majer, Johannes .
NATURE PHYSICS, 2018, 14 (12) :1168-+
[8]   Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator [J].
Angerer, Andreas ;
Astner, Thomas ;
Wirtitsch, Daniel ;
Sumiya, Hitoshi ;
Onoda, Shinobu ;
Isoya, Junichi ;
Putz, Stefan ;
Majer, Johannes .
APPLIED PHYSICS LETTERS, 2016, 109 (03)
[9]   Observation of strong coupling between one atom and a monolithic microresonator [J].
Aoki, Takao ;
Dayan, Barak ;
Wilcut, E. ;
Bowen, W. P. ;
Parkins, A. S. ;
Kippenberg, T. J. ;
Vahala, K. J. ;
Kimble, H. J. .
NATURE, 2006, 443 (7112) :671-674
[10]   Ultra-high-Q toroid microcavity on a chip [J].
Armani, DK ;
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
NATURE, 2003, 421 (6926) :925-928