Deflated and augmented Krylov subspace techniques

被引:0
|
作者
Chapman, A
Saad, Y
机构
[1] UNIV MINNESOTA,MINNESOTA SUPERCOMP INST,MINNEAPOLIS,MN 55455
[2] UNIV MINNESOTA,DEPT COMP SCI,MINNEAPOLIS,MN 55455
关键词
deflated GMRES; inner-iteration GMRES; block GMRES; augmented Krylov sub-space; flexible GMRES;
D O I
10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.0.CO;2-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a general framework for a number of techniques based on projection methods on 'augmented Krylov subspaces'. These methods include the deflated GMRES algorithm, an inner-outer FGMRES iteration algorithm, and the class of block Krylov methods. Augmented Krylov subspace methods often show a significant improvement in convergence rate when compared with their standard counterparts using the subspaces of the same dimension. The methods can all be implemented with a variant of the FGMRES algorithm. (C) 1997 by John Wiley & Sons, Ltd.
引用
收藏
页码:43 / 66
页数:24
相关论文
共 50 条
  • [31] Massively parallel implementation and approaches to simulate quantum dynamics using Krylov subspace techniques
    Brenes, Marlon
    Varma, Vipin Kerala
    Scardicchio, Antonello
    Girotto, Ivan
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 235 : 477 - 488
  • [32] Simulation of multiconductor transmission lines using Krylov subspace order-reduction techniques
    Univ of Arizona, Tucson, United States
    IEEE Trans Comput Aided Des Integr Circuits Syst, 5 (485-496):
  • [33] Comparative study on techniques of model order reduction using rational Krylov subspace method
    Saiduzzaman, Md
    Islam, Md Shafiqul
    Uddin, Mohammad Monir
    Gani, Mohammad Osman
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (07) : 1971 - 1978
  • [34] Krylov subspace-based model-order reduction techniques for circuit simulations
    Beyene, WT
    SchuttAine, JE
    PROCEEDINGS OF THE 39TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 1996, : 331 - 334
  • [35] Spectral Variants of Krylov Subspace Methods
    Brígida Molina
    Marcos Raydan
    Numerical Algorithms, 2002, 29 : 197 - 208
  • [36] On the convergence of restarted Krylov subspace methods
    Simoncini, V
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (02) : 430 - 452
  • [37] A theoretical overview of Krylov subspace methods
    Weiss, R
    APPLIED NUMERICAL MATHEMATICS, 1995, 19 (03) : 207 - 233
  • [38] Krylov subspace split Bregman methods
    Alotaibi, Majed
    Buccini, Alessandro
    Reichel, Lothar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 371 - 390
  • [39] Krylov subspace acceleration of waveform relaxation
    Lumsdaine, A
    Wu, DY
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) : 90 - 111
  • [40] THE HAMILTONIAN EXTENDED KRYLOV SUBSPACE METHOD
    Benner, Peter
    Fassbender, Heike
    Senn, Michel-Niklas
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 572 - 606