High fidelity dissipation engineering using parametric interactions

被引:19
作者
Doucet, E. [1 ]
Reiter, F. [2 ]
Ranzani, L. [3 ]
Kamal, A. [1 ,4 ]
机构
[1] Univ Massachusetts, Dept Phys & Appl Phys, Lowell, MA 01854 USA
[2] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
[3] Raytheon BBN Technol, Cambridge, MA 02138 USA
[4] MIT, Res Lab Elect, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
关键词
STEADY-STATE; QUANTUM; ENTANGLEMENT; PHOTON;
D O I
10.1103/PhysRevResearch.2.023370
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum reservoir engineering provides a versatile framework for quantum state preparation and control, with improved robustness to decoherence. However, established methods for dissipative state preparation typically rely on resolving resonances, limiting the target state fidelity due to a competition between the stabilization mechanism and uncontrolled dissipation. We propose a new framework for engineering dissipation that combines the advantages of static dispersive couplings with strong parametric driving and show how it can realize high fidelity and fast entanglement stabilization devoid of such constraints. In addition, the phase sensitivity of parametric couplings allows arbitrary state preparation and continuous control of the stabilized state within a fixed parity manifold. The proposed protocol is readily accessible with the state-of-the-art superconducting qubit technology and holds promise for fast preparation of large entangled resource states.
引用
收藏
页数:12
相关论文
共 41 条
  • [11] Decoherence in a superconducting quantum bit circuit -: art. no. 134519
    Ithier, G
    Collin, E
    Joyez, P
    Meeson, PJ
    Vion, D
    Esteve, D
    Chiarello, F
    Shnirman, A
    Makhlin, Y
    Schriefl, J
    Schön, G
    [J]. PHYSICAL REVIEW B, 2005, 72 (13):
  • [12] Kamal A, 2011, NAT PHYS, V7, P311, DOI [10.1038/nphys1893, 10.1038/NPHYS1893]
  • [13] Quantum harmonic oscillator state synthesis by reservoir engineering
    Kienzler, D.
    Lo, H. -Y.
    Keitch, B.
    de Clercq, L.
    Leupold, F.
    Lindenfelser, F.
    Marinelli, M.
    Negnevitsky, V.
    Home, J. P.
    [J]. SCIENCE, 2015, 347 (6217) : 53 - 56
  • [14] Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits
    Kimchi-Schwartz, M. E.
    Martin, L.
    Flurin, E.
    Aron, C.
    Kulkarni, M.
    Tureci, H. E.
    Siddiqi, I.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (24)
  • [15] Preparation of entangled states by quantum Markov processes
    Kraus, B.
    Buechler, H. P.
    Diehl, S.
    Kantian, A.
    Micheli, A.
    Zoller, P.
    [J]. PHYSICAL REVIEW A, 2008, 78 (04):
  • [16] Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects
    Krauter, Hanna
    Muschik, Christine A.
    Jensen, Kasper
    Wasilewski, Wojciech
    Petersen, Jonas M.
    Cirac, J. Ignacio
    Polzik, Eugene S.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [17] Stabilizing a Bell state of two superconducting qubits by dissipation engineering
    Leghtas, Z.
    Vool, U.
    Shankar, S.
    Hatridge, M.
    Girvin, S. M.
    Devoret, M. H.
    Mirrahimi, M.
    [J]. PHYSICAL REVIEW A, 2013, 88 (02):
  • [18] The local approach to quantum transport may violate the second law of thermodynamics
    Levy, Amikam
    Kosloff, Ronnie
    [J]. EPL, 2014, 107 (02)
  • [19] Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers
    Li, Peng-Bo
    Gao, Shao-Yan
    Li, Hong-Rong
    Ma, Sheng-Li
    Li, Fu-Li
    [J]. PHYSICAL REVIEW A, 2012, 85 (04):
  • [20] Dissipative production of a maximally entangled steady state of two quantum bits
    Lin, Y.
    Gaebler, J. P.
    Reiter, F.
    Tan, T. R.
    Bowler, R.
    Sorensen, A. S.
    Leibfried, D.
    Wineland, D. J.
    [J]. NATURE, 2013, 504 (7480) : 415 - +