High fidelity dissipation engineering using parametric interactions

被引:19
作者
Doucet, E. [1 ]
Reiter, F. [2 ]
Ranzani, L. [3 ]
Kamal, A. [1 ,4 ]
机构
[1] Univ Massachusetts, Dept Phys & Appl Phys, Lowell, MA 01854 USA
[2] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
[3] Raytheon BBN Technol, Cambridge, MA 02138 USA
[4] MIT, Res Lab Elect, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
关键词
STEADY-STATE; QUANTUM; ENTANGLEMENT; PHOTON;
D O I
10.1103/PhysRevResearch.2.023370
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum reservoir engineering provides a versatile framework for quantum state preparation and control, with improved robustness to decoherence. However, established methods for dissipative state preparation typically rely on resolving resonances, limiting the target state fidelity due to a competition between the stabilization mechanism and uncontrolled dissipation. We propose a new framework for engineering dissipation that combines the advantages of static dispersive couplings with strong parametric driving and show how it can realize high fidelity and fast entanglement stabilization devoid of such constraints. In addition, the phase sensitivity of parametric couplings allows arbitrary state preparation and continuous control of the stabilized state within a fixed parity manifold. The proposed protocol is readily accessible with the state-of-the-art superconducting qubit technology and holds promise for fast preparation of large entangled resource states.
引用
收藏
页数:12
相关论文
共 41 条
  • [1] rf-SQUID-Mediated Coherent Tunable Coupling between a Superconducting Phase Qubit and a Lumped-Element Resonator
    Allman, M. S.
    Altomare, F.
    Whittaker, J. D.
    Cicak, K.
    Li, D.
    Sirois, A.
    Strong, J.
    Teufel, J. D.
    Simmonds, R. W.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (17)
  • [2] Photon-Mediated Interactions: A Scalable Tool to Create and Sustain Entangled States of N Atoms
    Aron, Camille
    Kulkarni, Manas
    Tuereci, Hakan E.
    [J]. PHYSICAL REVIEW X, 2016, 6 (01):
  • [3] Dissipation and ultrastrong coupling in circuit QED
    Beaudoin, Felix
    Gambetta, Jay M.
    Blais, A.
    [J]. PHYSICAL REVIEW A, 2011, 84 (04):
  • [4] Environment induced entanglement in Markovian dissipative dynamics
    Benatti, F
    Floreanini, R
    Piani, M
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (07)
  • [5] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [6] Carmichael H. J., 2002, Statistical Methods in Quantum Optics, V1
  • [7] Preparation of Entangled and Antiferromagnetic States by Dissipative Rydberg Pumping
    Carr, A. W.
    Saffman, M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (03)
  • [8] Deep Strong Coupling Regime of the Jaynes-Cummings Model
    Casanova, J.
    Romero, G.
    Lizuain, I.
    Garcia-Ripoll, J. J.
    Solano, E.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (26)
  • [9] Unconditional preparation of entanglement between atoms in cascaded optical cavities
    Clark, S
    Peng, A
    Gu, M
    Parkins, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (17) : 177901 - 177901
  • [10] Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting
    Gambetta, Jay
    Blais, Alexandre
    Schuster, D. I.
    Wallraff, A.
    Frunzio, L.
    Majer, J.
    Devoret, M. H.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW A, 2006, 74 (04):