Nano-oxidation of Si using ac modulation in atomic force microscope lithography

被引:11
|
作者
Park, Cheol Hong
Bae, Sukjong
Lee, Haiwon
机构
[1] Hanyang Univ, Dept Nanostruct Semicond Engn, Seoul 133791, South Korea
[2] Hanyang Univ, Dept Chem, Seoul 133791, South Korea
关键词
AFM anodization lithography; oxidation; space charge effect; ac modulation; dc pulse;
D O I
10.1016/j.colsurfa.2005.11.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In atomic force microscope (AFM) anodization lithography, voltage modulation is an important factor leading to enhanced oxide growth rate, increased aspect ratio of oxide patterns and greater control of oxide features. Through the reduction of space charge buildup in the oxide, ac modulation overcomes the self-limiting character of the oxide. When ac modulation was applied to substrates, the aspect ratio of protruded oxide patterns increased five-fold compared to dc pulse. Controlling electron exposure time between the positive and negative voltages is an important factor for controlling the aspect ratio of oxide patterns. This showed the dependence of applied voltage types and various electron exposure times in ac modulation. By adjusting electron exposure time and reducing space charge in the oxide, this study revealed that ac modulation is superior for obtaining high aspect ratios compared to dc pulse. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:552 / 555
页数:4
相关论文
共 50 条
  • [31] Possible mechanisms in atomic force microscope-induced nano-oxidation lithography in epitaxial La0.67Ba0.33MnO3-δ thin films
    Yong, Grace J.
    Vanderlinde, William E.
    Tanyi, Ekembu Kevin
    Schaefer, David M.
    Stumpf, Christopher
    Kolagani, Rajeswari M.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (02):
  • [32] Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscope nano-oxidation
    Lin, HN
    Chang, YH
    Yen, JH
    Hsu, JH
    Leu, IC
    Hon, MH
    CHEMICAL PHYSICS LETTERS, 2004, 399 (4-6) : 422 - 425
  • [33] FORCE MEASUREMENT USING AN AC ATOMIC FORCE MICROSCOPE
    DUCKER, WA
    COOK, RF
    CLARKE, DR
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (09) : 4045 - 4052
  • [34] GaAs/AlGaAs oxide tunnel barriers fabricated by atomic force microscope tip-induced nano-oxidation technique
    Okada, Y
    Iuchi, Y
    Kawabe, M
    Harris, JS
    COMPOUND SEMICONDUCTORS 1998, 1999, (162): : 337 - 342
  • [35] Study of overlay metrology in atomic force microscope lithography (overlaying lithography with atomic force microscope)
    Li, Xiaona
    Han, Li
    Gu, Wenqi
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (06): : 3101 - 3104
  • [36] A Study on Carbon-Nanotube Local Oxidation Lithography Using an Atomic Force Microscope
    Kumar, Kitu
    Sul, Onejae
    Strauf, Stefan
    Choi, Daniel S.
    Fisher, Frank
    Prasad, Marehalli G.
    Yang, Eui-Hyeok
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (04) : 849 - 854
  • [37] Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope
    Masubuchi, S.
    Ono, M.
    Yoshida, K.
    Hirakawa, K.
    Machida, T.
    APPLIED PHYSICS LETTERS, 2009, 94 (08)
  • [38] A Systematic Study of Graphite Local Oxidation Lithography Parameters Using an Atomic Force Microscope
    Kumar, Kitu
    Strauf, Stefan
    Yang, E. H.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2010, 2 (02) : 185 - 188
  • [39] High aspect ratio nano-oxidation of silicon with noncontact atomic force microscopy
    Clement, N
    Tonneau, D
    Gely, B
    Dallaporta, H
    Safarov, V
    Gautier, J
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06): : 2348 - 2351