Inverse Design and Demonstration of a Compact on-Chip Narrowband Three-Channel Wavelength Demultiplexer

被引:224
作者
Su, Logan [1 ]
Piggott, Alexander Y. [1 ]
Sapra, Neil V. [1 ]
Petykiewicz, Jan [1 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
关键词
silicon photonics; optical devices; beamsplitter; nanophotonic optimization; DOMAIN MAXWELLS EQUATIONS; TOPOLOGY OPTIMIZATION; COMPLIANT MECHANISMS; NANOPHOTONICS; FILTERS;
D O I
10.1021/acsphotonics.7b00987
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In wavelength division multiplexing schemes, splitters must be used to combine and separate different wavelengths. Conventional splitters are fairly large with footprints in hundreds to thousands of square microns, and experimentally demonstrated multimode-interference-based and inverse-designed ultracompact splitters operate with only two channels and large channel spacing (>100 nm). Here we inverse design and experimentally demonstrate a three-channel wavelength demultiplexer with 40 nm spacing (1500, 1540, and 1580 nm) with a footprint of 24.75 mu m(2). The splitter has a simulated peak insertion loss of -1.55 dB with under -15 dB crosstalk and a measured peak insertion loss of -2.29 dB with under -10.7 dB crosstalk.
引用
收藏
页码:301 / 305
页数:9
相关论文
共 26 条
[1]  
ALLAIRE G, 1993, NATO ADV SCI INST SE, V227, P207
[2]   Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology [J].
Bogaerts, Wim ;
Selvaraja, Shankar Kumar ;
Dumon, Pieter ;
Brouckaert, Joost ;
De Vos, Katrien ;
Van Thourhout, Dries ;
Baets, Roel .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (01) :33-44
[3]   Imprinted silicon-based nanophotonics [J].
Borel, Peter I. ;
Bilenberg, Brian ;
Frandsen, Lars H. ;
Nielsen, Theodor ;
Fage-Pedersen, Jacob ;
Lavrinenko, Andrei V. ;
Jensen, Jakob S. ;
Sigmund, Ole ;
Kristensen, Anders .
OPTICS EXPRESS, 2007, 15 (03) :1261-1266
[4]   Topology optimization of non-linear elastic structures and compliant mechanisms [J].
Bruns, TE ;
Tortorelli, DA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (26-27) :3443-3459
[5]   Silicon Nanophotonic Integrated Devices for On-Chip Multiplexing and Switching [J].
Dai, Daoxin .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (04) :572-587
[6]  
Frandsen L. H., 2013, WAVELENGTH SELECTIVE
[7]   Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides [J].
Frellsen, Louise F. ;
Ding, Yunhong ;
Sigmund, Ole ;
Frandsen, Lars H. .
OPTICS EXPRESS, 2016, 24 (15) :16866-16873
[8]   Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide [J].
Jensen, JS ;
Sigmund, O .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (06) :1191-1198
[9]   A hybrid full-wave analysis of via-hole grounds using finite-difference and finite-element time-domain methods [J].
Koh, D ;
Lee, HB ;
Itoh, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (12) :2217-2223
[10]   Linear optical quantum computing with photonic qubits [J].
Kok, Pieter ;
Munro, W. J. ;
Nemoto, Kae ;
Ralph, T. C. ;
Dowling, Jonathan P. ;
Milburn, G. J. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :135-174