Relaxation times of dissipative many-body quantum systems

被引:150
作者
Znidaric, Marko [1 ]
机构
[1] Univ Ljubljana, Dept Phys, Fac Math & Phys, Ljubljana 61000, Slovenia
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 04期
关键词
BOUNDS; CHAIN;
D O I
10.1103/PhysRevE.92.042143
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study relaxation times, also called mixing times, of quantum many-body systems described by a Lindblad master equation. We in particular study the scaling of the spectral gap with the system length, the so-called dynamical exponent, identifying a number of transitions in the scaling. For systems with bulk dissipation we generically observe different scaling for small and for strong dissipation strength, with a critical transition strength going to zero in the thermodynamic limit. We also study a related phase transition in the largest decay mode. For systems with only boundary dissipation we show a generic bound that the gap cannot be larger than similar to 1/L. In integrable systems with boundary dissipation one typically observes scaling of similar to 1/L-3, while in chaotic ones one can have faster relaxation with the gap scaling as similar to 1/L and thus saturating the generic bound. We also observe transition from exponential to algebraic gap in systems with localized modes.
引用
收藏
页数:17
相关论文
共 58 条
[1]   On thermalization in Kitaev's 2D model [J].
Alicki, R. ;
Fannes, M. ;
Horodecki, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (06)
[2]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[3]   Quasilocality and Efficient Simulation of Markovian Quantum Dynamics [J].
Barthel, Thomas ;
Kliesch, Martin .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[4]   Charge and spin transport in strongly correlated one-dimensional quantum systems driven far from equilibrium [J].
Benenti, Giuliano ;
Casati, Giulio ;
Prosen, Tomaz ;
Rossini, Davide ;
Znidaric, Marko .
PHYSICAL REVIEW B, 2009, 80 (03)
[5]   Negative differential conductivity in far-from-equilibrium quantum spin chains [J].
Benenti, Giuliano ;
Casati, Giulio ;
Prosen, Tomaz ;
Rossini, Davide .
EPL, 2009, 85 (03)
[6]  
Bianchi L., 2014, PHYS REV E, V89
[7]  
Breuer H. P., 2002, The Theory of Open Quantum Systems
[8]   A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains [J].
Buca, Berislav ;
Prosen, Tomaz .
NEW JOURNAL OF PHYSICS, 2012, 14
[9]   Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems [J].
Cai, Zi ;
Barthel, Thomas .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[10]  
Carmele A., 2015, ARXIV150706117