Microfluidic Paper-Based Analytical Devices (μPADs) and Micro Total Analysis Systems (μTAS): Development, Applications and Future Trends

被引:188
作者
Lisowski, Piotr [1 ]
Zarzycki, Pawel K. [1 ]
机构
[1] Koszalin Univ Technol, Sect Toxicol & Bioanalyt, PL-75453 Koszalin, Poland
关键词
Microfluidic paper-based analytical devices (mu PADs); Micro total analysis systems (mu TAS); Micro-chip chromatography; Micro-planar chromatography (micro-TLC); Detection systems; Biochemical analysis; CAPILLARY-ELECTROPHORESIS MICROCHIPS; REAL-TIME PCR; ON-A-CHIP; ELECTROCHEMICAL DETECTION; DNA AMPLIFICATION; DRUG DISCOVERY; LOW-COST; FABRICATION; SEPARATION; BLOOD;
D O I
10.1007/s10337-013-2413-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidic paper-based analytical devices and micro total analysis systems are relatively new group of analytical tools, capable of analyzing complex biochemical samples containing macromolecules, proteins, nucleic acids, toxins, cells or pathogens. Within one analytical run, fluidic manipulations like transportation, sorting, mixing or separation are available. Recently, microfluidic devices are a subject of extensive research, mostly for fast and non-expensive biochemical analysis but also for screening of medical samples and forensic diagnostics. They are used for neurotransmitter detection, cancer diagnosis and treatment, cell and tissue culture growth and amplification, drug discovery and determination, detection and identification of microorganisms. This review summarizes development history, basic fabrication methods, applications and also future development trends for production of such devices.
引用
收藏
页码:1201 / 1214
页数:14
相关论文
共 50 条
  • [21] From Microfluidic Paper-Based Analytical Devices to Paper-Based Biofluidics with Integrated Continuous Perfusion
    Wu, Yan
    Gao, Qing
    Nie, Jing
    Fu, Jian-Zhong
    He, Yong
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (04): : 601 - 607
  • [22] A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection
    Liu, Shuopeng
    Su, Wenqiong
    Ding, Xianting
    SENSORS, 2016, 16 (12) : 1 - 17
  • [23] Review on microfluidic paper-based analytical devices towards commercialisation
    Akyazi, Tugce
    Basabe-Desmonts, Lourdes
    Benito-Lopez, Fernando
    ANALYTICA CHIMICA ACTA, 2018, 1001 : 1 - 17
  • [24] Emerging applications of paper-based analytical devices for drug analysis: A review
    Noviana, Eka
    Carrao, Daniel Blascke
    Pratiwi, Rimadani
    Henry, Charles S.
    ANALYTICA CHIMICA ACTA, 2020, 1116 : 70 - 90
  • [25] Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis
    Alamo Busa, Lori Shayne
    Mohammadi, Saeed
    Maeki, Masatoshi
    Ishida, Akihiko
    Tani, Hirofumi
    Tokeshi, Manabu
    MICROMACHINES, 2016, 7 (05):
  • [26] Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis
    Khamcharoen, Wisarut
    Kaewjua, Kantima
    Yomthiangthae, Phanumas
    Anekrattanasap, Ananyaporn
    Chailapakul, Orawon
    Siangproh, Weena
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2022, 22 (27) : 2241 - 2260
  • [27] Fabrication for paper-based microfluidic analytical devices and saliva analysis application
    Hao, Zeji
    Chen, Hongyu
    Shi, Xin
    Tan, Wei
    Zhu, Guorui
    MICROFLUIDICS AND NANOFLUIDICS, 2021, 25 (10)
  • [28] Microfluidic paper-based analytical devices for cancer diagnosis
    Shalaby, Ahmed A.
    Tsao, Chia-Wen
    Ishida, Akihiko
    Maeki, Masatoshi
    Tokeshi, Manabu
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 379
  • [29] Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications
    Wang, Minglu
    Cui, Jiarui
    Wang, Ying
    Yang, Liu
    Jia, Zhenzhen
    Gao, Chuanjie
    Zhang, Hongyan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (27) : 8188 - 8206
  • [30] USB powered microfluidic paper-based analytical devices
    Schaumburg, Federico
    Kler, Pablo A.
    Carrell, Cody S.
    Berli, Claudio L. A.
    Henry, Charles S.
    ELECTROPHORESIS, 2020, 41 (7-8) : 562 - 569