Learning to compose fuzzy behaviors for autonomous agents

被引:15
作者
Bonarini, A
Basso, F
机构
[1] Politec. Milano AI Robotics Proj., Dipto. di Elettronica e Informazione, Politecnico di Milano, Milano
[2] Dipto. di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Piazza Leonardo da Vinci
关键词
reinforcement learning; fuzzy control; autonomous agents;
D O I
10.1016/S0888-613X(97)00002-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present S-ELF, an evolutionary algorithm that we have developed to learn the context of activation of fully logic controllers implementing fuzzy behaviors for an autonomous agent. S-ELF learns context metarules that are used to coordinate basic behaviors in order to perform complex tasks in a partially and imprecisely known environment Context metarules are expressed in terms of positive and negated fuzzy predicates. We also show how S-ELF can learn robust and portable behaviors, thus reducing the time and effort to design behavior-based agents. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:409 / 432
页数:24
相关论文
共 23 条
[1]  
BASSO F, 1996, THESIS MILAN
[2]  
BONARIMI A, IN PRESS P WAC ISRAM
[3]  
BONARINI A, 1996, FUZZY MODELLING PARA, P265
[4]  
BONARINI A, 1994, P EUFIT 94, P475
[5]  
BONARINI A, 1996, GENETIC ALGORITHMS S, P447
[6]  
BONARINI A, IN PRESS DESIGNING F
[7]  
BONARINI A, IN PRESS ADAPTIVE BE
[8]  
BONARINI A, 1993, P EUFIT 93, P69
[9]  
BONARINI A, 1996, P IPMU 96, P1223
[10]  
Booker L. B., 1988, Machine Learning, V3, P161, DOI 10.1007/BF00113896