Recursive System Identification Using Outlier-Robust Local Models

被引:1
|
作者
Bessa, Jessyca A. [1 ]
Barreto, Guilherme A. [1 ]
机构
[1] Univ Fed Ceara, Grad Program Teleinformat Engn, Campus Pici, Fortaleza, Ceara, Brazil
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 01期
关键词
System identification; neural networks; local linear models; outliers; M-estimation; NETWORKS;
D O I
10.1016/j.ifacol.2019.06.101
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we revisit the design of neural-network based local linear models for dynamic system identification aiming at extending their use to scenarios contaminated with outliers. To this purpose, we modify well-known local linear models by replacing their original recursive rules with outlier-robust variants developed from the M-estimation framework. The performances of the proposed variants are evaluated in free simulation tasks over 3 benchmarking datasets. The obtained results corroborate the considerable improvement in the performance of the proposed models in the presence of outliers. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:436 / 441
页数:6
相关论文
共 50 条
  • [1] An Outlier-Robust Growing Local Model Network for Recursive System Identification
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    Rocha-Neto, Ajalmar R.
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4257 - 4289
  • [2] An Outlier-Robust Growing Local Model Network for Recursive System Identification
    Jéssyca A. Bessa
    Guilherme A. Barreto
    Ajalmar R. Rocha-Neto
    Neural Processing Letters, 2023, 55 : 4257 - 4289
  • [3] An outlier-robust kernel RLS algorithm for nonlinear system identification
    Santos, Jose Daniel A.
    Barreto, Guilherme A.
    NONLINEAR DYNAMICS, 2017, 90 (03) : 1707 - 1726
  • [4] An outlier-robust kernel RLS algorithm for nonlinear system identification
    José Daniel A. Santos
    Guilherme A. Barreto
    Nonlinear Dynamics, 2017, 90 : 1707 - 1726
  • [5] Deep recurrent Gaussian processes for outlier-robust system identification
    Mattos, Cesar Lincoln C.
    Dai, Zhenwen
    Damianou, Andreas
    Barreto, Guilherme A.
    Lawrence, Neil D.
    JOURNAL OF PROCESS CONTROL, 2017, 60 : 82 - 94
  • [6] Online sparse correntropy kernel learning for outlier-robust system identification
    Duarte, Michael S.
    Barreto, Guilherme A.
    IFAC PAPERSONLINE, 2019, 52 (01): : 430 - 435
  • [7] Outlier-robust parameter estimation for unnormalized statistical models
    Sasaki, Hiroaki
    Takenouchi, Takashi
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (01) : 223 - 252
  • [8] From batch to recursive outlier-robust identification of non-linear dynamic systems with neural networks
    Thomas, P
    Bloch, G
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 178 - 183
  • [9] Outlier-Robust Tensor PCA
    Zhou, Pan
    Feng, Jiashi
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3938 - 3946
  • [10] Outlier-Robust Wasserstein DRO
    Nietert, Sloan
    Goldfeld, Ziv
    Shafiee, Soroosh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,