Automated high-throughput Wannierisation

被引:50
作者
Vitale, Valerio [1 ,2 ,3 ,4 ]
Pizzi, Giovanni [5 ,6 ]
Marrazzo, Antimo [5 ,6 ]
Yates, Jonathan R. [7 ]
Marzari, Nicola [5 ,6 ]
Mostofi, Arash A. [2 ,3 ,4 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, 19 JJ Thomson Ave, Cambridge, England
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Imperial Coll London, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
[5] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, Lausanne, Switzerland
[6] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, Lausanne, Switzerland
[7] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
DECAY PROPERTIES; PSEUDOPOTENTIALS; WANNIER90; ORBITALS; SYSTEMS; TOOL;
D O I
10.1038/s41524-020-0312-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Maximally-localised Wannier functions (MLWFs) are routinely used to compute from first-principles advanced materials properties that require very dense Brillouin zone integration and to build accurate tight-binding models for scale-bridging simulations. At the same time, high-throughput (HT) computational materials design is an emergent field that promises to accelerate reliable and cost-effective design and optimisation of new materials with target properties. The use of MLWFs in HT workflows has been hampered by the fact that generating MLWFs automatically and robustly without any user intervention and for arbitrary materials is, in general, very challenging. We address this problem directly by proposing a procedure for automatically generating MLWFs for HT frameworks. Our approach is based on the selected columns of the density matrix method and we present the details of its implementation in an AiiDA workflow. We apply our approach to a dataset of 200 bulk crystalline materials that span a wide structural and chemical space. We assess the quality of our MLWFs in terms of the accuracy of the band-structure interpolation that they provide as compared to the band-structure obtained via full first-principles calculations. Finally, we provide a downloadable virtual machine that can be used to reproduce the results of this paper, including all first-principles and atomistic simulations as well as the computational workflows.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis
    Wang, Ruheng
    Jiang, Yi
    Jin, Junru
    Yin, Chenglin
    Yu, Haoqing
    Wang, Fengsheng
    Feng, Jiuxin
    Su, Ran
    Nakai, Kenta
    Zou, Quan
    Wei, Leyi
    NUCLEIC ACIDS RESEARCH, 2023, 51 (07) : 3017 - 3029
  • [42] SoFIA: a data integration framework for annotating high-throughput datasets
    Childs, Liam Harold
    Mamlouk, Soulafa
    Brandt, Joergen
    Sers, Christine
    Leser, Ulf
    BIOINFORMATICS, 2016, 32 (17) : 2590 - 2597
  • [43] HappyTools: A software for high-throughput HPLC data processing and quantitation
    Jansen, Bas Cornelis
    Hafkenscheid, Lise
    Bondt, Albert
    Gardner, Richard Andrew
    Hendel, Jenifer Lynn
    Wuhrer, Manfred
    Spencer, Daniel Ian Richard
    PLOS ONE, 2018, 13 (07):
  • [44] Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research
    Shi, Yeyin
    Thomasson, J. Alex
    Murray, Seth C.
    Pugh, N. Ace
    Rooney, William L.
    Shafian, Sanaz
    Rajan, Nithya
    Rouze, Gregory
    Morgan, Cristine L. S.
    Neely, Haly L.
    Rana, Aman
    Bagavathiannan, Muthu V.
    Henrickson, James
    Bowden, Ezekiel
    Valasek, John
    Olsenholler, Jeff
    Bishop, Michael P.
    Sheridan, Ryan
    Putman, Eric B.
    Popescu, Sorin
    Burks, Travis
    Cope, Dale
    Ibrahim, Amir
    McCutchen, Billy F.
    Baltensperger, David D.
    Avant, Robert V., Jr.
    Vidrine, Misty
    Yang, Chenghai
    PLOS ONE, 2016, 11 (07):
  • [45] mirTools: microRNA profiling and discovery based on high-throughput sequencing
    Zhu, Erle
    Zhao, Fangqing
    Xu, Gang
    Hou, Huabin
    Zhou, LingLin
    Li, Xiaokun
    Sun, Zhongsheng
    Wu, Jinyu
    NUCLEIC ACIDS RESEARCH, 2010, 38 : W392 - W397
  • [46] HaTSPiL: A modular pipeline for high-throughput sequencing data analysis
    Morandi, Edoardo
    Cereda, Matteo
    Incarnato, Danny
    Parlato, Caterina
    Basile, Giulia
    Anselmi, Francesca
    Lauria, Andrea
    Simon, Lisa Marie
    Polignano, Isabelle Laurence
    Arruga, Francesca
    Deaglio, Silvia
    Tirtei, Elisa
    Fagioli, Franca
    Oliviero, Salvatore
    PLOS ONE, 2019, 14 (10):
  • [47] RosettaDDGPrediction for high-throughput mutational scans: From stability to binding
    Sora, Valentina
    Laspiur, Adrian Otamendi
    Degn, Kristine
    Arnaudi, Matteo
    Utichi, Mattia
    Beltrame, Ludovica
    De Menezes, Dayana
    Orlandi, Matteo
    Stoltze, Ulrik Kristoffer
    Rigina, Olga
    Sackett, Peter Wad
    Wadt, Karin
    Schmiegelow, Kjeld
    Tiberti, Matteo
    Papaleo, Elena
    PROTEIN SCIENCE, 2023, 32 (01)
  • [48] The challenges of delivering bioinformatics training in the analysis of high-throughput data
    Carvalho, Benilton S.
    Rustici, Gabriella
    BRIEFINGS IN BIOINFORMATICS, 2013, 14 (05) : 538 - 547
  • [49] High-throughput first-principles search for new ferroelectrics
    Garrity, Kevin F.
    PHYSICAL REVIEW B, 2018, 97 (02)
  • [50] High-throughput immunoassay through in-channel microfluidic patterning
    Zheng, Chunhong
    Wang, Jingwen
    Pang, Yuhong
    Wang, Jianbin
    Li, Wenbin
    Ge, Zigang
    Huang, Yanyi
    LAB ON A CHIP, 2012, 12 (14) : 2487 - 2490