Adipose tissue-derived mesenchymal stem cells' acellular product extracellular vesicles as a potential therapy for Crohn's disease

被引:13
作者
Altemus, Jessica [1 ,2 ]
Dadgar, Neda [1 ,2 ]
Li, Yan [1 ,2 ]
Lightner, Amy L. [1 ,2 ]
机构
[1] Cleveland Clin, Digest Dis Surg Inst, Dept Colorectal Surg, Cleveland, OH 44106 USA
[2] Cleveland Clin, Lerner Res Inst, Dept Inflammat & Immun, Cleveland, OH 44106 USA
关键词
Crohn's disease; extracellular vesicles; M1; M2 macrophage polarization; mesenchymal stem cells; INFLAMMATORY-BOWEL-DISEASE; COMPLEX PERIANAL FISTULA; RESOLUTION; POLARIZATION; MACROPHAGES; MICROBIOTA; CLEARANCE; FAT;
D O I
10.1002/jcp.30756
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The breakdown of gastrointestinal tract immune homeostasis leads to Crohn's disease (CD). Mesenchymal stem cells (MSCs) have demonstrated clinical efficacy in treating CD in clinical trials, but there is little known about the mechanism of healing. Considering the critical roles of macrophage polarization in CD and immunomodulatory properties of MSCs, we sought to decipher the interaction between adipose-derived MSCs and macrophages, including their cytokine production, regulation of differentiation, and pro-/anti-inflammatory function. RNA extraction and next generation sequencing was performed in adipose tissue from healthy control patients' mesentery (n = 3) and CD mesentery (n = 3). Infiltrated macrophage activation in the CD mesentery was tested, MSCs and extracellular vesicles (EVs) were isolated to compare the regulation of macrophage differentiation, cytokines production, and self-renewal capacities in vitro. CD patients' mesentery has increased M1 macrophage polarization and elevated activation. MSCs and their derived EVs, isolated from inflamed Crohn's mesentery, leads to a rapid differentiation of monocytes to a M1-like polarized phenotype. Conversely, MSCs and their derived EVs from healthy, non-Crohn's patients results in monocyte polarization into a M2 phenotype; this is seen regardless of the adipose source of MSCs (subcutaneous fat, omentum, normal mesentery). EVs derived from MSCs have the ability to regulate macrophage differentiation. Healthy MSCs and their associated EVs have the ability to drive monocytes to a M2 subset, effectively reversing an inflammatory phenotype. This mechanism supports why MSCs may be an effective therapeutic in CD and highlights EVs as a novel therapeutic for further exploration.
引用
收藏
页码:3001 / 3011
页数:11
相关论文
共 50 条
[41]   ISOLATION AND CHARACTERIZATION OF ADIPOSE TISSUE-DERIVED STEM CELLS [J].
Olkowska-Truchanowicz, Joanna .
POSTEPY BIOLOGII KOMORKI, 2008, 35 (04) :517-526
[42]   Adipose Tissue-Derived Stem Cells in Regenerative Medicine [J].
Frese, Laura ;
Dijkman, Petra E. ;
Hoerstrup, Simon P. .
TRANSFUSION MEDICINE AND HEMOTHERAPY, 2016, 43 (04) :268-274
[43]   Regenerative Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles [J].
Thalakiriyawa, Dineshi Sewvandi ;
Jayasooriya, Primali Rukmal ;
Dissanayaka, Waruna Lakmal .
CURRENT MOLECULAR MEDICINE, 2022, 22 (02) :98-119
[44]   Assessment of the Immunosuppressive Potential of INF-γ Licensed Adipose Mesenchymal Stem Cells, Their Secretome and Extracellular Vesicles [J].
Tavares Serejo, Teresa Raquel ;
Silva-Carvalho, Amandda Evelin ;
de Carvalho Filiu Braga, Luma Dayane ;
Rocha Neves, Francisco de Assis ;
Pereira, Rinaldo Wellerson ;
de Carvalho, Juliana Lott ;
Saldanha-Araujo, Felipe .
CELLS, 2019, 8 (01)
[45]   Cardiac cells and mesenchymal stem cells derived extracellular vesicles: a potential therapeutic strategy for myocardial infarction [J].
Qin, Dan ;
Wang, Xiaobo ;
Pu, Jun ;
Hu, Houxiang .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
[46]   Comparison between USPIOs and SPIOs for Multimodal Imaging of Extracellular Vesicles Extracted from Adipose Tissue-Derived Adult Stem Cells [J].
Capuzzo, Arnaud M. ;
Piccolantonio, Giusi ;
Negri, Alessandro ;
Bontempi, Pietro ;
Lacavalla, Maria A. ;
Malatesta, Manuela ;
Scambi, Ilaria ;
Mariotti, Raffaella ;
Luedtke-Buzug, Kerstin ;
Corsi, Mauro ;
Marzola, Pasquina .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
[47]   Adipose-derived mesenchymal stem cells secrete extracellular vesicles: A potential cell-free therapy for canine renal ischaemia-reperfusion injury [J].
Liu, Haifeng ;
Huang, Liyuan ;
Chen, Fuhao ;
Zhong, Zhijun ;
Ma, Xiaoping ;
Zhou, Ziyao ;
Cao, Suizhong ;
Shen, Liuhong ;
Peng, Guangneng .
VETERINARY MEDICINE AND SCIENCE, 2023, 9 (03) :1134-1142
[48]   IMMUNOMODULATORY POTENTIAL OF EXTRACELLULAR VESICLES DERIVED FROM MESENCHYMAL STEM CELLS OBTAINED BY ULTRAFILTRATION AND ULTRACENTRIFUGATION [J].
Barcelos, S. M. ;
Villarroel, C. L. P. ;
Bridi, A. ;
Bispo, E. C. I. ;
Rosa, P. M. ;
Garcez, E. M. ;
Malard, P. F. ;
Araujo, F. S. ;
Silveira, J. C. ;
Pogue, R. E. ;
Perecin, F. ;
Carvalho, J. L. .
CYTOTHERAPY, 2022, 24 (10) :S12-S12
[49]   Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells [J].
Liu, Xi ;
Wei, Qian ;
Lu, Lu ;
Cui, Shengnan ;
Ma, Kui ;
Zhang, Wenhua ;
Ma, Fang ;
Li, Haihong ;
Fu, Xiaobing ;
Zhang, Cuiping .
FRONTIERS IN IMMUNOLOGY, 2023, 14
[50]   Mechanism and Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells for the Treatment of Infectious Diseases [J].
You, Jingyi ;
Fu, Zhou ;
Zou, Lin .
FRONTIERS IN MICROBIOLOGY, 2021, 12