Limit points of eigenvalues of (di)graphs

被引:15
作者
Zhang, Fuji [1 ]
Chen, Zhibo
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
[2] Penn State Univ, Dept Math, Mckeesport, PA 15132 USA
基金
中国国家自然科学基金;
关键词
limit point; eigenvalue of digraph (graph); double cover; subdivision digraph; line digraph;
D O I
10.1007/s10587-006-0064-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph D, the set of limit points of eigenvalues of iterated subdivision digraphs of D is the unit circle in the complex plane if and only if D has a directed cycle. 3. Every limit point of eigenvalues of a set D of digraphs (graphs) is a limit point of eigenvalues of a set <(D)double over dot> of bipartite digraphs (graphs), where <(D)double over dot> consists of the double covers of the members in D. 4. Every limit point of eigenvalues of a set D of digraphs is a limit point of eigenvalues of line digraphs of the digraphs in D. 5. If M is a limit point of the largest eigenvalues of graphs, then -M is a limit point of the smallest eigenvalues of graphs.
引用
收藏
页码:895 / 902
页数:8
相关论文
共 16 条
  • [1] [Anonymous], 1987, J XINJIANG UNIV
  • [2] [Anonymous], 1960, THEORY MATRICES
  • [3] Bondy J.A., 2008, GRAD TEXTS MATH
  • [4] THE DISTRIBUTION OF EIGENVALUES OF GRAPHS
    CAO, DS
    YUAN, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 216 : 211 - 224
  • [5] GRAPHS CHARACTERIZED BY THE 2ND EIGENVALUE
    CAO, DS
    YUAN, H
    [J]. JOURNAL OF GRAPH THEORY, 1993, 17 (03) : 325 - 331
  • [6] Cvetkovic D., 1995, Spectra of Graphs-Theory and Application, V3rd ed.
  • [7] CVETKOVIC D, 1990, LINEAR MULTILINEAR A, V28, P3, DOI DOI 10.1080/03081089008818026
  • [8] THE LIMIT POINTS OF EIGENVALUES OF GRAPHS
    DOOB, M
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 : 659 - 662
  • [9] DOOB M, 1991, ABSTR AM MATH SOC, V12, P450
  • [10] Harary F, 1960, Rendiconti del Circolo Matematico di Palermo, V9, P161